You don't need loops at all. grw <- aggregate(gw ~ ts + ISEG + iter, data = dat, FUN = sum) GRW <- aggregate(gw ~ ts + ISEG, data = grw, FUN = function(x){max(x) - min(x)}) DC <- aggregate(div ~ ts + ISEG, data = subset(dat, IRCH == 1), FUN = function(x){max(x) - min(x)}) iter <- aggregate(iter ~ ts + ISEG, data = subset(dat, IRCH == 1), FUN = max) tmp <- merge(DC, iter) merge(tmp, GRW)
another option is to use the plyr package library(plyr) merge( ddply( subset(dat, IRCH == 1), c("ts", "ISEG"), summarize, divChng = max(div) - min(div), max.iter = max(iter) ), ddply( dat, c("ts", "ISEG"), summarize, gwChng = diff(range(ave(gw, iter, FUN = sum))) ) ) Best regards, ir. Thierry Onkelinx Instituut voor natuur- en bosonderzoek / Research Institute for Nature and Forest team Biometrie & Kwaliteitszorg / team Biometrics & Quality Assurance Kliniekstraat 25 1070 Anderlecht Belgium To call in the statistician after the experiment is done may be no more than asking him to perform a post-mortem examination: he may be able to say what the experiment died of. ~ Sir Ronald Aylmer Fisher The plural of anecdote is not data. ~ Roger Brinner The combination of some data and an aching desire for an answer does not ensure that a reasonable answer can be extracted from a given body of data. ~ John Tukey 2015-04-12 15:47 GMT+02:00 Morway, Eric <emor...@usgs.gov>: > The small example below works lighting-fast; however, when I run the same > script on my real problem, a 1Gb text file, the for loops have been running > for over 24 hrs and I have no idea if the processing is 10% done or 90% > done. I have not been able to figure out a betteR way to code up the > material within the for loops at the end of the example below. The > contents of divChng, the final product, are exactly what I'm after, but I > need help formulating more efficient R script, I've got two more 1Gb files > to process after the current one finishes, whenever that is... > > I appreciate any insights/solutions, Eric > > dat <- read.table(textConnection("ISEG IRCH div gw > 1 1 265 229 > 1 2 260 298 > 1 3 234 196 > 54 1 432 485 > 54 39 467 485 > 54 40 468 468 > 54 41 460 381 > 54 42 489 502 > 1 1 265 317 > 1 2 276 225 > 1 3 217 164 > 54 1 430 489 > 54 39 456 495 > 54 40 507 607 > 54 41 483 424 > 54 42 457 404 > 1 1 265 278 > 1 2 287 370 > 1 3 224 274 > 54 1 412 585 > 54 39 473 532 > 54 40 502 595 > 54 41 497 441 > 54 42 447 467 > 1 1 230 258 > 1 2 251 152 > 1 3 199 179 > 54 1 412 415 > 54 39 439 538 > 54 40 474 486 > 54 41 477 484 > 54 42 413 346 > 1 1 230 171 > 1 2 262 171 > 1 3 217 263 > 54 1 432 485 > 54 39 455 482 > 54 40 493 419 > 54 41 489 536 > 54 42 431 504 > 1 1 1002 1090 > 1 2 1222 1178 > 1 3 1198 1177 > 54 1 1432 1485 > 54 39 1876 1975 > 54 40 1565 1646 > 54 41 1455 1451 > 54 42 1427 1524 > 1 1 1002 968 > 1 2 1246 1306 > 1 3 1153 1158 > 54 1 1532 1585 > 54 39 1790 1889 > 54 40 1490 1461 > 54 41 1518 1536 > 54 42 1486 1585 > 1 1 1002 1081 > 1 2 1229 1262 > 1 3 1142 1241 > 54 1 1632 1659 > 54 39 1797 1730 > 54 40 1517 1466 > 54 41 1527 1589 > 54 42 1514 1612"),header=TRUE) > > dat$seq <- ifelse(dat$ISEG==1 & dat$IRCH==1, 1, 0) > tmp <- diff(dat[dat$seq==1,]$div)!=0 > dat$idx <- 0 > dat[dat$seq==1,][c(TRUE,tmp),]$idx <- 1 > dat$ts <- cumsum(dat$idx) > dat$iter <- ave(dat$seq, dat$ts,FUN=cumsum) > dat$ct <- seq(1:length(dat[,1])) > > timeStep <- unique(dat$ts) > SEG <- unique(dat$ISEG) > divChng <- data.frame(ts=NA, ISEG=NA, divChng=NA, gwChng=NA, iter=NA) > > #Can the following be rescripted for better harnessing R's processing > power? > > for (i in 1:length(timeStep)){ > for (j in 1:length(SEG)){ > datTS <- subset(dat,ts==timeStep[i] & ISEG==SEG[j] & IRCH==1) > datGW <- subset(dat,ts==timeStep[i] & ISEG==SEG[j]) > grw <- aggregate(gw ~ iter, datGW, sum) > > DC <- max(datTS$div)-min(datTS$div) > GRW <- max(grw$gw) - min(grw$gw) > divChng <- rbind(divChng,c(datTS$ts[1], SEG[j], DC, GRW, > max(datTS$iter))) > } > } > divChng <- divChng[!is.na(divChng$ISEG),] > > [[alternative HTML version deleted]] > > ______________________________________________ > R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see > https://stat.ethz.ch/mailman/listinfo/r-help > PLEASE do read the posting guide > http://www.R-project.org/posting-guide.html > and provide commented, minimal, self-contained, reproducible code. > [[alternative HTML version deleted]] ______________________________________________ R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.