I am trying to generalize a working piece of code for a single parameter to a 
multiple parameter problem. Reproducible code is below. The parameters to be 
estimated are a, b, and c. The estimation problem is such that there is one set 
of a, b, c parameters for each column of the data. Hence, in this sample data 
with 20 columns, there are 20 a params, 20 b-params, and 20 c-params.

Because I am estimating so many parameters, I am not certain that I have 
indicated to the function properly the right number of params to estimate and 
also if I have generated starting values in a sufficient way.

Thanks for any help.
Harold

dat <- replicate(20, sample(c(0,1), 2000, replace = T))
library(stat mod)
qq <- gauss.quad.prob(Q, dist = 'normal', mu = 0, sigma = 1)
nds <- qq$nodes
wts <- qq$weights
fn <- function(params){
a <- params[1:ncol(dat)]
b <- params[1:ncol(dat)]
c <- params[1:ncol(dat)]
L <- sapply(1:ncol(dat), function(i) dbinom(dat[,i], 1, c + ((1 - c)/(1 + 
exp(-1.7 * a * (nds[i] - b)))) * wts[i]))
r1 <- prod(colSums(L * wts))
-log(r1)
}
startVal <- rep(.5, ncol(dat))
opt <- optim(startVal, fn)

        [[alternative HTML version deleted]]

______________________________________________
R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.

Reply via email to