Hi R user, I am wondering whether I can perform a simple ANOVA analysis in the data in which I have mean + SE (+- Standard Error) for several groups. For this one, I calculated upper and lower confidence interval and made three classes for each group (mean, upper and lower values). After that, I did ANOVA (simple Anova). I am wondering whether this is a wrong approach? I have given an example
library(reshape) B<-structure(list(mean = c(0.0241262, 0.0433538, 0.2204764, 0.7830054 ), SE = c(0.0209097, 0.0329281, 0.1003248, 0.3019256), site = structure(1:4, .Label = c("A", "B", "C", "D"), class = "factor")), .Names = c("mean", "SE", "site"), class = "data.frame", row.names = c(NA, -4L)) attach(B) B1<-data.frame(B, Upper=mean+1.96*SE, Lower=mean-1.96*SE) B2<-subset(B1, select=c(-2)) B2 B3<-melt(B2, id=c("site")) B3 Anova<-aov(B3$value~B3$site) summary(Anova) Thanks ______________________________________________ R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.