When I use a model fit with LME, I get an error if I try to use "predict" with a dataset consisting of a single line.
For example, using this data: > simpledata Y t D ID 1 -1.464740870 1 0 1 2 1.222911373 2 0 1 3 -0.605996798 3 0 1 4 0.155692707 4 0 1 5 3.849619772 1 0 2 6 4.289213902 2 0 2 7 2.369407737 3 0 2 8 2.249052533 4 0 2 9 0.920044316 1 0 3 10 2.003262622 2 0 3 11 0.003833438 3 0 3 12 1.578300927 4 0 3 13 -0.842322442 1 1 4 14 -0.657256158 2 1 4 15 1.504491575 3 1 4 16 2.896007045 4 1 4 17 0.990505440 1 1 5 18 2.722942793 2 1 5 19 4.395861278 3 1 5 20 4.849296475 4 1 5 21 3.049616421 1 1 6 22 2.874405962 2 1 6 23 4.359511097 3 1 6 24 6.165419699 4 1 6 This happened: > testLME <- lme(Y~t+D,data=simpledata,random=~1|ID) > predict(testLME, simpledata[1,]) Error in val[revOrder, level + 1] : incorrect number of dimensions This has occurred with other datasets as well. Is this a bug in the code, or am I doing something wrong? (Also, is there a way to parse a formula of a type given to "random"? For example, given ~1+t|ID, I'd like to be able to extract all the variable names to the left of | and to the right of |, the way one can with a normal formula.) Thanks in advance! Rebecca ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.