R Help - I'd like to identify each correlation value in the dataframe below above/below .3/-.3 in order to graph the original data points. I've started with the call below to identify each value by it's row and column. I'd like to form a data object that identifies each set of variables that meet the criteria and then use that to graph the original data.
*do.call(cbind, lapply(list(row = row(data, T), col = col(data, T), value = data), as.character))* structure(c(-0.0228976615669603, 0.0228976615669603, 0.0345568787488209, -0.0345568787488209, 0.0704941162950863, 0.0501672252097525, 0.119766411337358, 0.0697823742392512, 0.0223273454311378, -0.0223273454311378, 0.125952482472234, -0.125952482472234, -0.0748856339421511, -0.0353553864437216, 0.199331873910442, -0.068756564596986, 0.0188033303819659, -0.0188033303819659, 0.124483870344689, -0.124483870344689, 0.158304442010968, -0.158304442010968, -0.00291892981576431, 0.00291892981576431, 0.289784855159971, 0.197017018634618, 0.0725645607308865, 0.0960039687045857, 0.145044311433109, -0.145044311433109, 0.228975321916426, -0.228975321916426, 0.26388395000877, 0.175954114053622, 0.326823414986536, 0.0464304517962428, 0.171060413427109, -0.171060413427109, 0.125608489395663, -0.125608489395663, 0.170699125959079, -0.170699125959079, -0.0537588992684595, 0.0537588992684595, 0.237938136557008, 0.130101348701669, 0.0420659299644508, 0.140016889896702, 0.175781963301805, -0.175781963301805, 0.277913325677977, -0.277913325677977, 0.250436246834054, 0.149310941080417, 0.345171759606147, 0.0499822279379925, 0.180291553611261, -0.180291553611261, 0.0983047617452837, -0.0983047617452837, 0.0908629320478729, -0.0908629320478729, 0.0162624158794471, -0.0162624158794471, 0.219099271324641, 0.143898328556892, 0.0808498509449568, 0.0534039458771934, 0.103639895676339, -0.103639895676339, 0.224298317217259, -0.224298317217259, 0.13939241528796, 0.0923125296440915, 0.2952647762031, -0.0573156158960486, 0.126972946909388, -0.126972946909388, 0.145176640269481, -0.145176640269481, 0.176722440639515, -0.176722440639515, -0.110517827771672, 0.110517827771672, 0.265161677824653, 0.0349452421080511, -0.00586032680446085, 0.17140674405117, -0.0141919172668973, 0.0141919172668973, 0.0416754535115447, -0.0416754535115447, 0.110687511145091, 0.163199987771469, 0.174846924599677, 0.116657756754811, 0.184924363876472, -0.184924363876472, 0.0740138506321435, -0.0740138506321435, 0.0653341995281647, -0.0653341995281647, 0.101098966521841, -0.101098966521841, -0.0263969055123976, -0.129660641707532, 0.16313101271814, -0.0000382052406584783, 0.118309823316179, -0.118309823316179, 0.0408519777835592, -0.0408519777835592, -0.15406959482671, -0.274340973979869, 0.1465995621482, -0.0608360452726588, -0.00570057335076342, 0.00570057335076342, 0.0988132735291764, -0.0988132735291764, 0.159498629897594, -0.159498629897594, -0.0258437210789338, 0.0258437210789338, 0.311623918577701, 0.0959243386674064, 0.0373444291324758, 0.131601179184854, 0.0032064022008327, -0.0032064022008327, 0.0126042917937794, -0.0126042917937794, 0.0288999352531186, 0.0343919995425096, 0.0375647873892517, 0.0734866249695526, 0.125835994106989, -0.125835994106989, 0.0557071876372764, -0.0557071876372764, 0.0190687287223345, -0.0190687287223345, 0.0301326072710063, -0.0301326072710063, 0.0881640884608706, 0.0600194980037123, 0.0948090975231923, 0.0259282757599189, 0.120417132810781, -0.120417132810781, 0.196695581235906, -0.196695581235906, 0.166210300278382, 0.0252645245285897, 0.239953962041662, -0.013933692494363, 0.0174600644363753, -0.0174600644363753, 0.169008089964054, -0.169008089964054, 0.0503612778194372, -0.0503612778194372, 0.175816302924921, -0.175816302924921, 0.141434785651191, 0.0824019401386654, 0.173429908437586, -0.136795834367563, 0.219543981806626, -0.219543981806626, 0.290697487363267, -0.290697487363267, 0.331683649439792, -0.0035319780591347, 0.237371764540467, -0.172828690804139, 0.00922163769628213, -0.00922163769628213, 0.275507919516733, -0.275507919516733, 0.128267529853407, -0.128267529853407, -0.16619622911667, 0.16619622911667, 0.102467428865746, -0.115779804556684, 0.000997318666924614, 0.297139396802529, 0.040957786791642, -0.040957786791642, -0.0160650315621922, 0.0160650315621922, -0.043765426943726, -0.0637020898937285, 0.142863591010818, 0.214059283535989, 0.13975223034564, -0.13975223034564, -0.0286586386843802, 0.0286586386843802, 0.13735028629468, -0.13735028629468, -0.147016933653806, 0.147016933653806, 0.174438743129307, -0.0116564727226121, -0.0413775943824046, 0.136551598575573, 0.0614942508131549, -0.0614942508131549, 0.0687487372508148, -0.0687487372508148, -0.0352587211103196, -0.0872464182568976, 0.162247767446472, 0.0282617081917608, 0.175608445537029, -0.175608445537029, -0.0339260764991994, 0.0339260764991994, 0.130002432167221, -0.130002432167221, -0.141752408742242, 0.141752408742242, 0.126603115520512, -0.0784556105378803, -0.0736773348350251, 0.154815164010555, -0.102200077602115, 0.102200077602115, -0.137144378194025, 0.137144378194025, 0.0132012835622079, 0.113105077279414, -0.0412435172396771, 0.182836991911806, 0.109656132908221, -0.109656132908221, -0.0341578533716874, 0.0341578533716874, -0.0155952702450936, 0.0155952702450936, 0.0962494517693934, -0.0962494517693934, 0.0745517006304259, 0.145954619132309, 0.0997683764233029, -0.0562240100001912, 0.13254524166143, -0.13254524166143, 0.236418162977751, -0.236418162977751, 0.0878486801199713, -0.00445794916320147, 0.227619583487885, -0.14911359391431, 0.0214260010937822, -0.0214260010937822, 0.120246543167583, -0.120246543167583), .Dim = c(20L, 13L), .Dimnames = list(c("Loss_Gain_PE_Amygdala_SF_right_hemisphere", "Gain_Loss_PE_Amygdala_SF_right_hemisphere", "Loss_Gain_EV_Amygdala_SF_right_hemisphere", "Gain_Loss_EV_Amygdala_SF_right_hemisphere", "Loss_PE_Amygdala_SF_right_hemisphere", "Gain_PE_Amygdala_SF_right_hemisphere", "Loss_EV_Amygdala_SF_right_hemisphere", "Gain_EV_Amygdala_SF_right_hemisphere", "Loss_Gain_PE_Amygdala_SF_left_hemisphere", "Gain_Loss_PE_Amygdala_SF_left_hemisphere", "Loss_Gain_EV_Amygdala_SF_left_hemisphere", "Gain_Loss_EV_Amygdala_SF_left_hemisphere", "Loss_PE_Amygdala_SF_left_hemisphere", "Gain_PE_Amygdala_SF_left_hemisphere", "Loss_EV_Amygdala_SF_left_hemisphere", "Gain_EV_Amygdala_SF_left_hemisphere", "Loss_Gain_PE_Amygdala_LB_right_hemisphere", "Gain_Loss_PE_Amygdala_LB_right_hemisphere", "Loss_Gain_EV_Amygdala_LB_right_hemisphere", "Gain_Loss_EV_Amygdala_LB_right_hemisphere"), c("hare2f1", "hare2f2", "hare4", "hare", "ext_t", "total_barrat_11_imputed", "mcq_k", "ppitots", "ppi_1_corrected", "ppi_2_corrected", "total_buss_perry", "hareResidNetExt", "extResidNetHare"))) -- *Edward H Patzelt | Clinical Science PhD StudentPsychology | Harvard University SNPLab http://scholar.harvard.edu/buckholtz <http://scholar.harvard.edu/buckholtz>* [[alternative HTML version deleted]] ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.