You could use: library(dplyr) library(tidyr) x.df %>% group_by(Year, Group, Eye_Color) %>% summarize(n=n()) %>% spread(Eye_Color,n, fill=0) Source: local data frame [6 x 5]
Year Group blue brown green 1 2000 1 2 1 0 2 2000 2 0 0 2 3 2001 1 1 0 0 4 2001 2 1 1 0 5 2001 3 1 0 0 6 2002 1 1 0 0 Or library(reshape2) dcast(x.df, Year+Group~Eye_Color, value.var="Eye_Color") A.K. On Friday, August 1, 2014 7:06 PM, Kathy Haapala <ka...@haapi.mn.org> wrote: If I have a dataframe x.df as follows: > x.df <- data.frame(Year = c(2000, 2000, 2000, 2000, 2000, 2001, 2001, 2001, 2001, 2002), Group = c(1, 1, 1, 2, 2, 1, 2, 2, 3, 1), Eye_Color = c("blue", "blue", "brown", "green", "green", "blue", "brown", "blue", "blue", "blue")) > x.df Year Group Eye_Color 1 2000 1 blue 2 2000 1 blue 3 2000 1 brown 4 2000 2 green 5 2000 2 green 6 2001 1 blue 7 2001 2 brown 8 2001 2 blue 9 2001 3 blue 10 2002 1 blue how can I turn it into a new dataframe that would take the data from multiple rows of Year/Group combinations and output the data into one row for each combination, like this: > x_new.df Year Group No_blue No_brown No_green 1 2000 1 2 1 0 2 2000 2 0 0 2 3 2001 1 1 0 0 4 2001 2 1 1 0 5 2001 3 1 0 0 6 2002 1 1 0 0 I've been trying to use for loops, but I'm wondering if anyone has a better or more simple suggestion. [[alternative HTML version deleted]] ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code. ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.