You could use tapply() and cut() in base R, as in > tapply(d$z, INDEX=list(y=cut(d$y,breaks=seq(900,1300,by=100)), > x=cut(d$x,breaks=seq(35,60,by=5))), FUN=mean) x y (35,40] (40,45] (45,50] (50,55] (55,60] (900,1e+03] 1644.779 1643.957 NA NA NA (1e+03,1.1e+03] NA NA NA 1597.028 NA (1.1e+03,1.2e+03] NA NA NA 1281.988 1846.123 (1.2e+03,1.3e+03] NA NA NA 1990.707 NA
cut() does the binning and tapply() applies the function 'FUN' to each group. Bill Dunlap TIBCO Software wdunlap tibco.com On Sat, Jul 19, 2014 at 7:57 AM, Mark Miller <mamille...@gmail.com> wrote: > This is probably a basic question, but I haven't been able to Google > anything helpful after trying for days. > > I have an R dataframe with x,y,z tuples, where z is a response to x and y > and can be modeled as a surface. > > > head(temp) > x y z > 1 36.55411 965.7779 1644.779 > 2 42.36912 978.9721 1643.957 > 3 58.34699 1183.7426 1846.123 > 4 53.55439 1232.2696 1990.707 > 5 50.76167 1115.2049 1281.988 > 6 51.37299 1059.9088 1597.028 > > I would like to create a matrix of mean z values, with rows representing > binned y values and columns representing binned x values, like > > 0<x<40 40<x<60 60<x<80 x>80 > 0<y<800 1000.0 1100.00 1100.00 1000.0 > 800<y<1200 1000.0 1200.00 1200.00 1000.0 > 1200<y<1400 1000.0 1200.00 1200.00 1000.0 > y<1400 1000.0 1100.00 1100.00 1000.0 > thanks > Mark > > [[alternative HTML version deleted]] > > ______________________________________________ > R-help@r-project.org mailing list > https://stat.ethz.ch/mailman/listinfo/r-help > PLEASE do read the posting guide http://www.R-project.org/posting-guide.html > and provide commented, minimal, self-contained, reproducible code. ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.