You can try this:
http://max2.ese.u-psud.fr/epc/conservation/Girondot/Publications/Blog_r/Entrees/2013/6/4_GLM_with_periodic_(annual)_transformation_of_factor.html

Sincerely,

Marc

Le 13/05/2014 05:42, Ortiz-Bobea, Ariel a écrit :
Hello,

I'm trying to fit a sine curve over successive temperature readings (i.e. 
minimum and maximum temperature) over several days and for many locations. The 
code below shows a hypothetical example of 5000 locations with  7 days of 
temperature data. Not very efficient when you have many more locations and days.

The linear interpolation takes 0.7 seconds, and the sine interpolations take 2 
to 4 seconds depending on the approach.

Any ideas on how to speed this up? Thanks in advance.

Ariel

### R Code ######

# 1- Prepare data fake data
   days<- 7
   n <- 5000*days
   tmin <- matrix(rnorm(n, mean=0) , ncol=days, nrow=5000)
   tmax <- matrix(rnorm(n, mean=10), ncol=days, nrow=5000)
   m <- matrix(NA, ncol=days*2, nrow=5000)
   m[,seq(1,ncol(m),2)]  <- tmin
   m[,seq(2,ncol(m)+1,2)]<- tmax
   # check first row
   plot(1:ncol(m), m[1,], type="l")

# 2 -linear interpolation: 0.66 seconds
   xout <- seq(0,ncol(m),0.25/24*2)[-1] # time step = 0.25 hours or 15 minutes
   system.time( m1 <- t(apply(m,1, function(y) approx(x=1:ncol(m), y=y, xout=xout, 
method="linear")$y)) )
   # Check first row
   plot(1:ncol(m), m[1,], type="l")
   points(xout, m1[1,], col="red", cex=1)


# 3- sine interpolation
   sine.approx1 <- function(index, tmin, tmax) {
     b <- (2*pi)/24  # period = 24 hours
     c <- pi/2 # horizontal shift
     xout <- seq(0,24,0.25)[-1]
     yhat <- apply(cbind(tmin[index,],tmax[index,]), 1, function(z) diff(z)/2 * 
sin(b*xout-c) + mean(z))
     #yhat <- yhat[-nrow(yhat),]
     yhat <- c(yhat)
     #plot(yhat, type="l")
   }
   sine.approx2 <- function(index, tmin, tmax) {
     b <- (2*pi)/24  # period = 24 hours
     c <- pi/2 # horizontal shift
     xout1 <- seq(0 ,12,0.25)
     xout2 <- seq(12,24,0.25)[-1]
     xout2 <- xout2[-length(xout2)]
     yhat1 <- apply(cbind(tmin[index,]                       ,tmax[index,]    
), 1, function(z) diff(z)/2 * sin(b*xout1-c) + mean(z))
     yhat2 <- 
apply(cbind(tmax[index,][-length(tmax[index,])],tmin[index,][-1]), 1, function(z) 
diff(z)/2 * sin(b*xout2+c) + mean(z))
     yhat2 <- cbind(yhat2,NA)
     yhat3 <- rbind(yhat1,yhat2)
     #yhat3 <- yhat3[-nrow(yhat3),]
     yhat3 <- c(yhat3)
     yhat <- yhat3
     #plot(c(yhat1))
     #plot(c(yhat2))
     #plot(yhat, type="l")
   }

   # Single sine: 2.23 seconds
   system.time( m2 <- t(sapply(1:nrow(m), function(i) sine.approx1(i, 
tmin=tmin, tmax=tmax))) )

   # Double sine: 4.03 seconds
   system.time( m3 <- t(sapply(1:nrow(m), function(i) sine.approx2(i, 
tmin=tmin, tmax=tmax))) )

   # take a look at approach 1
   plot(seq(-1,ncol(m)-1,1)[-1], m[1,], type="l")
   points(xout, m2[1,], col="red", cex=1)

   # take a look at approach 2
   plot(seq(-1,ncol(m)-1,1)[-1], m[1,], type="l")
   points(xout, m3[1,], col="blue", cex=1)


---
Ariel Ortiz-Bobea
Fellow
Resources for the Future
1616 P Street, N.W.
Washington, DC 20036
202-328-5173


        [[alternative HTML version deleted]]

______________________________________________
R-help@r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.


______________________________________________
R-help@r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.

Reply via email to