Hi Steve, Thanks for you reply. I have tried what you suggested and checked the limma guide sessions. Now I am getting the results from only one treatment which is great but the problem is all my adjusted Pvalues (adj.P.Val) are >0.05.
Don't really know how to solve this, I know my data works because I used DESeq and got around 200 differentially expressed genes FDR < 0.05. Here is the desing, targets and the script: > design co c2 1 1 0 2 1 0 3 1 0 4 1 0 5 0 1 6 0 1 7 0 1 8 0 1 9 0 1 > targets Individual condition B1 1 co B3 3 co B4 4 co B5 5 co D1 1 c2 D2 2 c2 D3 3 c2 D4 4 c2 D5 5 c2 >co=as.matrix(read.table("2014_04_02_6h_PB.csv",header=T, sep=",", row.names=1)) >keep <- rowSums(co)>=9 >nkeep <- sum(keep) >co2 <- co[keep,] >nf = calcNormFactors (co2) >targets= read.table ("targets.csv", header = T, sep=",",row.names=1) >targets >ind <- factor (targets$Individual) >treat <- factor (targets$condition, levels= c("co", "c2")) >design <- model.matrix(~0 +treat) >colnames (design) <- levels (treat) >y <- voom(co2,design,lib.size=colSums(co2)*nf) >corfit <- duplicateCorrelation(y,design,block=ind) >fit <- lmFit(y,design,block=ind,correlation=corfit$consensus) >cm <- makeContrasts (co2Vsco=c2-co, levels=design) >fit2 <- eBayes(contrasts.fit(fit,cm)) >res <- topTable (fit2,coef="co2Vsco", n=nrow (y), sort.by=ânoneâ) >res <- data.frame (res) >res2 <- subset (res, adj.P.Val < 0.1) > res2 [1] ID logFC AveExpr t P.Value adj.P.Val B <0 rows> (or 0-length row.names) Thanks again, Catalina [[alternative HTML version deleted]]
______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.