Hi to everyone, I have a big data set where rows are observations and columns are variables. It contains a lot of missing values. I have used multiple imputation with library mice and I get an exact prediction of each missing value. Now, I would like to know the error I can commit or the confidence interval.
How can I get this? This is part of my code library(mice) mod1<-mice(dat, method=c("","",rep("pmm",6))) ro<-round(cor(dat, use = "pair"), 3) predictor<-quickpred(dat)# esta matriz predictora se construye según las correlaciones mod1<-mice(dat,method=c("","",rep("pmm",6)), pred=predictor) imputados<-complete(mod1,'long') x.imp=split(imputados, imputados$.imp) acumula=x.imp[[1]][,-c(1,2)] for(j in 2:length(x.imp)) { acumula=acumula+x.imp[[j]][,-c(1,2)]} med.imp=acumula/5 Thanks in advance [[alternative HTML version deleted]]
______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.