Dear Mr/Mrs I am Iut, student of graduate student in Bogor Agriculture Institur I read a book on ensemble methods in data mining by Seni and Elder and find R code about bagging. I am confused how to call these functions and and how to agregate it with the majority votes? I think there is missing code in here.What if the function is replaced with SVM?
Example : genPredictors <- function(seed = 123, N = 30) { # Load package with random number generation # for the multivariate normal distribution library(mnormt) # 5 "features" each having a "standard" Normal # distribution with pairwise correlation 0.95 Rho <- matrix(c(1,.95,.95,.95,.95, + .95, 1,.95,.95,.95, + .95,.95,1,.95,.95, + .95,.95,.95,1,.95, + .95,.95,.95,.95,1), 5, 5) mu <- c(rep(0,5)) set.seed(seed); x <- rmnorm(N, mu, Rho) colnames(x) <- c("x1", "x2", "x3", "x4", "x5") return(x) } genTarget <- function(x, N, seed = 123) { # Response Y is generated according to: # Pr(Y = 1 | x1 <= 0.5) = 0.2, # Pr(Y = 1 | x1 > 0.5) = 0.8 y <- c(rep(-1, N)) set.seed(seed); for (i in 1:N) { if ( x[i,1] <= 0.5 ) { if ( runif(1) <= 0.2 ) { y[i] <- 1 } else { y[i] <- 0 } } else { if ( runif(1) <= 0.8 ) { y[i] <- 1 } else { y[i] <- 0 } } } return(y) } genBStrapSamp <- function(seed = 123, N = 200, Size = 30) { set.seed(seed) sampleList <- vector(mode = "list", length = N) for (i in 1:N) { sampleList[[i]] <- sample(1:Size, replace=TRUE) } return(sampleList) } fitBStrapTrees <- function(data, sampleList, N) { treeList <- vector(mode = "list", length = N) for (i in 1:N) { tree.params=list(minsplit = 4, minbucket = 2, maxdepth = 7) treeList[[i]] <- fitClassTree(data[sampleList[[i]],], tree.params) } return(treeList) } fitClassTree <- function(x, params, w = NULL, seed = 123) { library(rpart) set.seed(seed) tree <- rpart(y ~ ., method = "class", data = x, weights = w, cp = 0, minsplit = params.minsplit, minbucket = params.minbucket, maxdepth = params.maxdepth) return(tree) } thankyou very much best regard, Iut [[alternative HTML version deleted]] ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.