I was going through this example of maxent use: http://cran.r-project.org/web/packages/maxent/maxent.pdf
# LOAD LIBRARY library(maxent) # READ THE DATA, PREPARE THE CORPUS, and CREATE THE MATRIX data <- read.csv(system.file("data/NYTimes.csv.gz",package="maxent")) corpus <- Corpus(VectorSource(data$Title[1:150])) matrix <- DocumentTermMatrix(corpus) # TRAIN/PREDICT USING SPARSEM REPRESENTATION sparse <- as.compressed.matrix(matrix) model <- maxent(sparse[1:100,],data$Topic.Code[1:100]) results <- predict(model,sparse[101:150,]) Any idea how I can check the accuracy wrt the classification present in : data$Topic.Code ? I see the result is a 50:20 matrix but then how do I compare it with data$Topic.Code. Rgds, Vineet [[alternative HTML version deleted]] ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.