I suggest you post (a shortened version of?) your tome to the r-sig-ecology list instead.
Cheers, Bert On Mon, Aug 19, 2013 at 3:47 PM, Ann Marie Reinhold <reinh...@montana.edu> wrote: > I am running permutation regressions in package lmPerm using lmp(). I > am getting what I find to be confusing results and I would like help > understanding what is going on. To illustrate my problem, I created a > simple example and am running lmp() such that the results of the lmp() > models should be identical to that of lm(). I'm referring to the > notes section of the lmp() documentation where it says that the > "function will behave identically to lm() if the following parameters > are set: perm="", seqs=TRUE, center=FALSE." > > Here is an example wherein I am unable to match my lmp() results to my > lm() results. > > library(lmPerm) > library(lattice) > > x1 <- c(rnorm(60, 150, 50),rnorm(60, 150, 50),rnorm(60, 150, 50)) > y1 <- c(30-0.1*x1[1:60], rep(10, 60), 0.1*x1[121:180]) > factor.levels1 <- c(rep("DOWN", 60), rep("FLAT", 60), rep("UP", 60)) > > xyplot(y1 ~ x1, groups = factor.levels1, auto.key = TRUE) > > lmp.model.1 <- lmp(y1 ~ x1*factor.levels1 - 1, perm = "", seqs = > TRUE, center = FALSE) > summary(lmp.model.1) > lm.model.1 <- lm(y1 ~ x1*factor.levels1 - 1) > summary(lm.model.1) > > Here are the results: >> summary(lmp.model.1) > Call: > lmp(formula = y1 ~ x1 * factor.levels1 - 1, perm = "", seqs = TRUE, > center = FALSE) > Residuals: > Min 1Q Median 3Q Max > -1.509e-13 -1.700e-16 4.277e-17 9.558e-16 1.621e-14 > Coefficients: > Estimate Std. Error t value Pr(>|t|) > factor.levels1DOWN 3.000e+01 7.359e-15 4.077e+15 <2e-16 *** > factor.levels1FLAT 1.000e+01 4.952e-15 2.019e+15 <2e-16 *** > factor.levels1UP -5.809e-16 5.095e-15 -1.140e-01 0.9094 > x1 4.096e-17 2.137e-17 1.917e+00 0.0569 . > x1:factor.levels11 -1.000e-01 3.391e-17 -2.949e+15 <2e-16 *** > x1:factor.levels12 -4.500e-17 2.792e-17 -1.612e+00 0.1089 > --- > Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 > Residual standard error: 1.226e-14 on 174 degrees of freedom > Multiple R-Squared: 1, Adjusted R-squared: 1 > F-statistic: 3.721e+31 on 6 and 174 DF, p-value: < 2.2e-16 > >> summary(lm.model.1) > Call: > lm(formula = y1 ~ x1 * factor.levels1 - 1) > Residuals: > Min 1Q Median 3Q Max > -3.141e-14 -3.190e-15 -9.880e-16 8.920e-16 1.905e-13 > Coefficients: > Estimate Std. Error t value Pr(>|t|) > x1 -1.000e-01 5.638e-17 -1.774e+15 <2e-16 *** > factor.levels1DOWN 3.000e+01 9.099e-15 3.297e+15 <2e-16 *** > factor.levels1FLAT 1.000e+01 6.123e-15 1.633e+15 <2e-16 *** > factor.levels1UP -3.931e-15 6.300e-15 -6.240e-01 0.533 > x1:factor.levels1FLAT 1.000e-01 6.826e-17 1.465e+15 <2e-16 *** > x1:factor.levels1UP 2.000e-01 6.931e-17 2.886e+15 <2e-16 *** > --- > Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 > Residual standard error: 1.515e-14 on 174 degrees of freedom > Multiple R-squared: 1, Adjusted R-squared: 1 > > > I thought that the results of summary(lmp.model.1) would be the same > as summary(lm.model.1). However, I am concerned that I am > interpreting the results incorrectly because I can't get the results > to match. Specifically, I simulated data with a slope for UP of 0.1, > the slope for FLAT of 0, and the slope for DOWN of -0.1. I can recover > these values in lm.model.1, but not lmp.model.1. In the output for > the lmp.model.1, I am estimating the slope for DOWN to be > approximately -0.1 (4.096e-17-1.000e-01) and the slope of the FLAT to > be approximately 0 (4.096e-17-4.500e-17); however, the slope of UP > (what I think is equal to the reference level x1) is 4.096e-17. Am I > interpreting the x1 term incorrectly? Why are the lmp() results not > identical to the lm() results? > > I ran a similar example using a modification of the above data wherein > factor level A is equal to FLAT, factor level B is equal to DOWN, and > factor level C is equal to UP. Again, I was unable to match the > results from lm() and lmp(). > > x2 <- c(rnorm(60, 150, 50), rnorm(60, 150, 50),rnorm(60, 150, 50)) > y2 <- c(rep(10, 60), 30-0.1*x2[61:120], 0.1*x2[121:180]) > factor.levels2 <- c(rep("A", 60), rep("B", 60), rep("C", 60)) > > xyplot(y2 ~ x2, groups = factor.levels2, auto.key = TRUE) > lmp.model.2 <- lmp(y2 ~ x2*factor.levels2 - 1, perm = "", seqs = > TRUE, center = FALSE) > summary(lmp.model.2) > lm.model.2 <- lm(y2 ~ x2*factor.levels2 - 1) > summary(lm.model.2) > > Here are the results: >> summary(lmp.model.2) > Call: > lmp(formula = y2 ~ x2 * factor.levels2 - 1, perm = "", seqs = TRUE, > center = FALSE) > Residuals: > Min 1Q Median 3Q Max > -1.284e-13 -6.772e-16 1.439e-16 1.581e-15 4.323e-14 > Coefficients: > Estimate Std. Error t value Pr(>|t|) > factor.levels2A 1.000e+01 5.545e-15 1.803e+15 < 2e-16 *** > factor.levels2B 3.000e+01 4.707e-15 6.373e+15 < 2e-16 *** > factor.levels2C 1.556e-15 4.994e-15 3.120e-01 0.755688 > x2 6.840e-17 1.860e-17 3.677e+00 0.000314 *** > x2:factor.levels21 1.030e-16 2.734e-17 3.767e+00 0.000226 *** > x2:factor.levels22 -1.000e-01 2.550e-17 -3.921e+15 < 2e-16 *** > --- > Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 > Residual standard error: 1.131e-14 on 174 degrees of freedom > Multiple R-Squared: 1, Adjusted R-squared: 1 > F-statistic: 4.719e+31 on 6 and 174 DF, p-value: < 2.2e-16 > > I would expect the reference level slope (term x2 in lmp.model.2, > which I believe is the slope for factor level C) to be 0.1. However, > it is 6.840e-17. Am I interpreting the reference levels for the lmp() > models incorrectly? Perhaps I am specifying the models incorrectly. > Any help would be very much appreciated. > > > My session info is as follows: > R version 3.0.1 (2013-05-16) > Platform: x86_64-w64-mingw32/x64 (64-bit) > locale: > [1] LC_COLLATE=English_United States.1252 LC_CTYPE=English_United States.1252 > [3] LC_MONETARY=English_United States.1252 LC_NUMERIC=C > [5] LC_TIME=English_United States.1252 > attached base packages: > [1] stats graphics grDevices utils datasets methods base > other attached packages: > [1] lattice_0.20-15 lmPerm_1.1-2 > loaded via a namespace (and not attached): > [1] grid_3.0.1 tools_3.0.1 > > Thanks, > Ann Marie > > > > Ann Marie Reinhold | Doctoral Candidate > Montana Cooperative Fishery Research Unit > Department of Ecology | Montana State University > Box 173460 | Bozeman, MT 59717 > Email: reinhold [AT] montana [DOT] edu | Office: (406) 994-6643 > > ______________________________________________ > R-help@r-project.org mailing list > https://stat.ethz.ch/mailman/listinfo/r-help > PLEASE do read the posting guide http://www.R-project.org/posting-guide.html > and provide commented, minimal, self-contained, reproducible code. -- Bert Gunter Genentech Nonclinical Biostatistics Internal Contact Info: Phone: 467-7374 Website: http://pharmadevelopment.roche.com/index/pdb/pdb-functional-groups/pdb-biostatistics/pdb-ncb-home.htm ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.