On Jul 26, 2013, at 9:33 AM, David Winsemius wrote: > fun2 <- function(x,y) { (x<y)*(x>0)* (1/(2*pi))*exp(-y/2)* sqrt((x/(y-x)))} > persp(outer(0:5, 0:6, fun2) )
There does seem to be some potential pathology at the edges of the range, Restricting it to x >= 0.03 removes most of that concern. fun2 <- function(x,y) { (x<y)*(x>0)* (1/(2*pi))*exp(-y/2)* sqrt((x/(y-x)))} persp(outer(seq(0.01,5,by=.01), seq(.02,6,by=.01), fun2) ,ticktype="detailed") > fun <- function(x) { (x[1]<x[2])*(x[1]>0)* > (1/(2*pi))*exp(-x[2]/2)*if(x[1]>x[2]){0}else{ sqrt((x[1]/(x[2]-x[1])) )}} > adaptIntegrate(fun, lower = c(0.03,0.03), upper =c(5, 6), tol=1e-2 ) $integral [1] 0.7605703 $error [1] 0.00760384 $functionEvaluations [1] 190859 $returnCode [1] 0 I tried decreasing the tolerance to 1e-3 but the wait exceeds the patience I have allocated to the problem. -- David Winsemius Alameda, CA, USA ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.