I just have read the guide and I can do some small steps with cran but I still have no clue...
I have data like this: X1 X2 X3 ... X21 Y 1 0 0 0 ... 18 -0,07254 2 1 0 0 ... 6 -0,14921 3 0 1 0 ... 12 -0,04165 4 0 0 0 ... 8 0,08359 5 ... ... ... ... ... ... 120 0 0 1 1 8 0,07928 My script is: > require(stats); require(graphics) > test = read.table("test.dat", header=T) > x <- test[, 1:21] > y <- test[, "Y"] > lm(y ~ x) The error may be an invalid type (list) for variable x (see below): Fehler in model.frame.default(formula = y ~ x, drop.unused.levels = TRUE) : ungültiger Typ (list) für die Variable 'x' Then I tried: ... > lm(data=test) Then I get a lot of coefficients, but I'm not sure. That cant be the result. Then I tried: > summary(lm(data = wetter)) Call: lm(data = wetter) Residuals: ALL 120 residuals are 0: no residual degrees of freedom! Coefficients: (139 not defined because of singularities) Estimate Std. Error t value Pr(>|t|) (Intercept) 0.044747 NA NA NA X2 0.660275 NA NA NA X3 -0.097629 NA NA NA X4 0.647851 NA NA NA X5 -3.305631 NA NA NA ... 0.249788 NA NA NA I am confused... Best regards, Thomas ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.