I just have read the guide and I can do some small steps with cran but
I still have no clue...

I have data like this:
        X1      X2      X3      ...     X21     Y
1       0       0       0       ...     18      -0,07254
2       1       0       0       ...     6       -0,14921
3       0       1       0       ...     12      -0,04165
4       0       0       0       ...     8       0,08359
5       ...     ...     ...     ...     ...     ...
120     0       0       1       1       8       0,07928

My script is:
> require(stats); require(graphics)
> test = read.table("test.dat", header=T)
> x <- test[, 1:21]
> y <- test[, "Y"]
> lm(y ~ x)

The error may be an invalid type (list) for variable x (see below):
Fehler in model.frame.default(formula = y ~ x, drop.unused.levels =
TRUE) :
  ungültiger Typ (list) für die Variable 'x'

Then I tried:
...
> lm(data=test)
Then I get a lot of coefficients, but I'm not sure. That cant be the
result.

Then I tried:
> summary(lm(data = wetter))

Call:
lm(data = wetter)

Residuals:
ALL 120 residuals are 0: no residual degrees of freedom!

Coefficients: (139 not defined because of singularities)
                       Estimate Std. Error t value Pr(>|t|)
(Intercept)            0.044747         NA      NA       NA
X2                     0.660275         NA      NA       NA
X3                    -0.097629         NA      NA       NA
X4                     0.647851         NA      NA       NA
X5                    -3.305631         NA      NA       NA
...                    0.249788         NA      NA       NA

I am confused...

Best regards,
 Thomas

______________________________________________
R-help@r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.

Reply via email to