Hi Robert, On Sun, Jun 30, 2013 at 1:40 AM, Robert Lynch <robert.b.ly...@gmail.com> wrote: > I am trying to interpret the output of GLM and I am not sure how it is > treating the factor GENDER with levels G-M and G-F.
Probably using dummy codes (or "treatment contrasts" as useRs refer to them) unless you've changed the defaults. See getOption("contrasts") contr.treatment contrasts(master1$Gender) > > Below is the output of summary(GPA.lm) > > > Call: > glm(formula = zGPA ~ Units.Bfr.7A * GENDER, data = Master1) > > Deviance Residuals: > Min 1Q Median 3Q Max > -1.1432 -0.3285 -0.1061 0.2283 1.8286 > > Coefficients: > Estimate Std. Error t value Pr(>|t|) > (Intercept) -2.513e-01 2.238e-02 -11.230 < 2e-16 *** > Units.Bfr.7A 2.297e-05 2.851e-04 0.081 0.936 > GENDERG-M 3.183e-01 4.536e-02 7.018 2.56e-12 *** > Units.Bfr.7A:GENDERG-M -3.073e-03 5.975e-04 -5.142 2.82e-07 *** > --- > Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 > > (Dispersion parameter for gaussian family taken to be 0.2432662) > > Null deviance: 1204.2 on 4875 degrees of freedom > Residual deviance: 1185.2 on 4872 degrees of freedom > (106 observations deleted due to missingness) > AIC: 6950.8 > > Number of Fisher Scoring iterations: 2 > > > > second I would like to draw two lines w/ confidince intervals on the > scatter plot. One for G-M and the other for G-F > > I think I am doing this with > stat_smooth(aes(group=GENDER), method="glm", fullrange=TRUE) > but again am not sure quite what is being outputted. I think this runs separate regressions for each level of group. That's probably not quite what you want, though it may be close enough. A better option would be to calculate predicted values and standard errors from the model. You can do this several ways; here are two of them: ## Option 1: create a data.frame containing the x values for which you want predictions, and calculate predicted falues using predict() m1PredData <- expand.grid(GENDER=levels(Master1$GENDER), Units.Bfr.7A = with(Master1, { seq(min(Units.Bfr.7A), max(Units.Bfr.7A), by=1) })) m1PredData <- cbind(m1PredData, predict(GPA.lm, se.fit=TRUE, newdata=m1PredData)) ## Option 2: Use the effects package: library(effects) m1Effects <- effect("Units.Bfr.7A:GENDER", GPA.lm, se=TRUE) plot(m1Effects) Hope this helps, Ista > > [[alternative HTML version deleted]] > > > ______________________________________________ > R-help@r-project.org mailing list > https://stat.ethz.ch/mailman/listinfo/r-help > PLEASE do read the posting guide http://www.R-project.org/posting-guide.html > and provide commented, minimal, self-contained, reproducible code. > ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.