Dear list,
I've searched the archives and tried some code, however would appreciate some 
input - even a pointer in the direction of the correct function to use.

Given N samples each of which is measured for characteristics x1, x2, x3,... (m 
˜ 6) where each characteristic is a roughly normally distributed numeric, but 
with different center and scale.
Then the N samples are measured again for characteristics again as x1, x2, 
x3,..., however the identity of the samples is unknown.

Is there a function which will assign the unique identities from the first 
measurement to the second measurement?

I've tried scaling by using the pooled variance of each x1 (i.e. 2N values to 
estimate the variance of the measure of characteristic x1, the characteristic 
x2, etc.) to construct the normalized distance from one sample's second 
measurement x1, x2, x3... to each of the first measurements and then pick the 
minimum distance to assign an identity to the second measurement.  Then loop 
over all the second measurements to find the first measurement "closest" to it.
However I result with one sample ID from the first measurement being assigned 
to multiple second measurements.

How could I minimize the matching between the second measurements and the first 
with unique sample ID assignment?


Example:
measure height, weight, and blood pressure of 100 people with their names 
recorded (scale and ruler both have some random unknown error)
measure the height, weight, and blood pressure of those 100 people again, but 
you forgot to write down their names. (assume that the scale and ruler errors 
have not changed since the first measurement)

How to assign the second set of measurements to the first?


Leif Kirschenbaum, Ph.D., PMP
Principal Reliability Engineer
Parts Engineering
Design Reliability
Product Reliability
SSL
3825 Fabian Way M/S H-21
Palo Alto, CA 94303
Tel: +1-650-852-6580
Facsimile: +1-650-852-7832
www.ssloral.com

This e-mail, and any attachments, are intended solely for the use of the 
intended recipient(s) and may contain
legally privileged, proprietary and/or confidential information. Any use, 
disclosure, dissemination, distribution or
copying of this e-mail and any attachments for any purposes that have not been 
specifically authorized by the
sender is strictly prohibited. If you are not the intended recipient, please 
immediately notify the sender by reply
e-mail and permanently delete all copies and attachments.
The entire content of this e-mail is for "information purposes" only and should 
not be relied upon by the recipient
in any way unless otherwise confirmed in writing by way of letter or facsimile.


________________________________
This message (including any attachments) may contain con...{{dropped:7}}

______________________________________________
R-help@r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.

Reply via email to