try something like the following: x <- runif(1000, -3, 3) y <- 2 + 3 * x + rnorm(1000) f <- gl(10, 100)
lm.lis <- vector("list", 10) for (i in 1:10) { lm.lis[[i]] <- lm(y ~ x, subset = f == as.character(i)) } sapply(lm.lis, coef) sapply(lm.lis, fitted) I hope it helps. Best, Dimitris ---- Dimitris Rizopoulos Biostatistical Centre School of Public Health Catholic University of Leuven Address: Kapucijnenvoer 35, Leuven, Belgium Tel: +32/(0)16/336899 Fax: +32/(0)16/337015 Web: http://med.kuleuven.be/biostat/ http://www.student.kuleuven.be/~m0390867/dimitris.htm Quoting Chip Barnaby <[EMAIL PROTECTED]>:
Hello, I would like to create a subscriptable collection (presumably a list) of lm() models. I have a data frame DX containing 6 groups of data. The general idea is (NOT RUN) ... for (i in 1:6) { DXS = subset( DX, <whatever>); LMX[ i] = lm( <formula>, data = DXS); } Now access model results by subscript ... e.g. coefficients( LMX[ 2]). Or would it be [[ 2]]? I have experimented with various schemes, attempting to "pre-allocate" a list etc. without success. Also, I assume that lm() does not make a copy of input data? That is, if I want "predict( LMX[ i])", I would have to retain a copy the associated DXS subsets? TIA, Chip Barnaby --------------------------------------------------------- Chip Barnaby [EMAIL PROTECTED] Vice President of Research Wrightsoft Corp. 781-862-8719 x118 voice 131 Hartwell Ave 781-861-2058 fax Lexington, MA 02421 www.wrightsoft.com ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.
Disclaimer: http://www.kuleuven.be/cwis/email_disclaimer.htm ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.