Hi Oihane

lmFit is from the limma package, and the limma package is part of the Bioconductor project; the Bioconductor mailing list

  http://bioconductor.org/help/mailing-list/

(follow the 'Post' link) may be a more appropriate place to post this question (after searching the archive) if there is no answer here.

Martin

On 05/21/2013 04:49 AM, Oihane Irazoki wrote:
Hi! I'm sorry for bothering you. I'm a new R-user and I'm having some problems 
while doing a microarray analysis. I'm comparing the whole genome array of a 
Salmonella serovar to another 25, and my goal is to determine which genes are 
differentially expressed. I'm using limma package and running the next code,


DIFFERENTIAL EXPRESSION i
#several groups comparisson (by serovars)

groups <- read.table("ClusteringSamples.txt", head=T, sep='\t')

f <- factor(groups$Serovar)
design <- model.matrix(~0 + f)

colnames(design) <- c("Abortusovis", "Agona", "Anatum", "Arizonae", 
"Braenderup",
        "Bredeney", "Cholerasuis", "Derby", "Enteritidis", "Gallinarum", 
"Goelzau",
         "Hadar", "Havana", "Infantis", "Kedougou", "Mbandaka", "Mikawasima", 
"Ohio",
         "ParatiphyA", "ParatiphyB", "Pos.Control", "Pullorum", "Typhi",
         "Typhimurium", "Virchow")
            #Convertir a vectores!

summary(is.na(data)) #check if there is any missing value in the dataset.

fit <- lmFit(data, design)

contrast.matrix <- makeContrasts(Abortusovis-Pos.Control, Agona-Pos.Control,
         Anatum-Pos.Control, Arizonae-Pos.Control, Braenderup-Pos.Control,
         Bredeney-Pos.Control, Cholerasuis-Pos.Control, Derby-Pos.Control,
         Enteritidis-Pos.Control, Gallinarum-Pos.Control, Goelzau-Pos.Control,
         Hadar-Pos.Control, Havana-Pos.Control, Infantis-Pos.Control,
         Kedougou-Pos.Control, Mbandaka-Pos.Control, Mikawasima-Pos.Control,
         Ohio-Pos.Control, ParatiphyA-Pos.Control, ParatiphyB-Pos.Control,
         Pos.Control-Pos.Control, Pullorum-Pos.Control, Typhi-Pos.Control,
         Typhimurium-Pos.Control, Virchow-Pos.Control,
                                levels=design)

fit1 <- contrasts.fit(fit, contrast.matrix)
fit2 <- eBayes(fit1)

But when I try to run eBayes correction to then compute topTable and get those 
differentially expressed genes, I get and error back:


Error in eigen(cor.matrix, symmetric = TRUE) :
   infinite or missing values in 'x'
In addition: Warning messages:
1: In ebayes(fit = fit, proportion = proportion, stdev.coef.lim = 
stdev.coef.lim,  :
   Estimation of var.prior failed - set to default value
2: In cov2cor(object$cov.coefficients) :
   diag(.) had 0 or NA entries; non-finite result is doubtful

I try to eliminate those missing values, but then I only can compute the 
contrast matrix of 13 of my 25 different serovars.
How can I solve the problem? I'll appreciate the all the help and advices.

Oihane
__
Oihane Irazoki Sanchez
PhD Student, Molecular Microbiology

Depart. de Genètica i Microbiologia (Facultat de Biociències)
UAB, 08193 Bellaterra (Barcelona), Spain

Phone: 34-660938553
E-mail: oihane.iraz...@uab.cat / o.iraz...@gmail.com


        [[alternative HTML version deleted]]



______________________________________________
R-help@r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.



--
Computational Biology / Fred Hutchinson Cancer Research Center
1100 Fairview Ave. N.
PO Box 19024 Seattle, WA 98109

Location: Arnold Building M1 B861
Phone: (206) 667-2793

______________________________________________
R-help@r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.

Reply via email to