On May 17, 2013, at 11:48 AM, Chirag Maru wrote: > I have following data for which I need to calculate the weighted aggregate > value of the parameter at each time. > > Date,Parameter,Weight > 2012-01-31,90,200 > 2012-01-31,80,400 > 2012-01-31,70,500 > 2012-01-31,60,800 > 2012-02-29,120,220 > 2012-02-29,110,410 > 2012-02-29,75,520 > 2012-02-29,65,840 > 2012-03-31,115,210 > 2012-03-31,100,405 > 2012-03-31,70,500 > 2012-03-31,60,800 > > So for the above sample the solution looks like: > > Date,Weighted Parameter > 2012-01-31,70 > 2012-02-29,82.96482412 > 2012-03-31,77.10182768 > > Could I potentially use tapply / aggregate for this? Would like to avoid a > for loop if possible.
> by(dat, dat[1], FUN=function(d) weighted.mean(d[["Parameter"]], > w=d[["Weight"]]) ) Date: 2012-01-31 [1] 70 ------------------------------------------------------------ Date: 2012-02-29 [1] 82.96482 ------------------------------------------------------------ Date: 2012-03-31 [1] 77.10183 It's a bit of a shame that there is no as.data.frame.by function. You can create a dataframe from the by object with as.data.frame.table with the only defect in the naming of the second column as.data.frame.table(by(dat, dat[1], FUN=function(d) weighted.mean(d[["Parameter"]], w=d[["Weight"]]) )) Date Freq 1 2012-01-31 70.00000 2 2012-02-29 82.96482 3 2012-03-31 77.10183 setNames(as.data.frame.table(by(dat, dat[1], FUN=function(d) weighted.mean(d[["Parameter"]], w=d[["Weight"]]) )), c("Dts", "wtdmeans")) Dts wtdmeans 1 2012-01-31 70.00000 2 2012-02-29 82.96482 3 2012-03-31 77.10183 -- David Winsemius Alameda, CA, USA ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.