Dear R People: I have the following situation. I have observations that are 128 samples per second, which is fine. I want to fit them with ARIMA models, also fine.
My question is, please: when I do my forecasting, do I need to do anything special to the "n.ahead" parm, please? Here is the initial setup: > xx <- ts(rnorm(128),start=0,freq=128) > str(xx) Time-Series [1:128] from 0 to 0.992: -1.07 0.498 1.508 0.354 -0.497 ... > xx.ar <- arima(xx,order=c(1,0,0)) > str(xx.ar) List of 13 $ coef : Named num [1:2] -0.0818 0.0662 ..- attr(*, "names")= chr [1:2] "ar1" "intercept" $ sigma2 : num 1.06 $ var.coef : num [1:2, 1:2] 7.78e-03 -5.09e-05 -5.09e-05 7.07e-03 ..- attr(*, "dimnames")=List of 2 .. ..$ : chr [1:2] "ar1" "intercept" .. ..$ : chr [1:2] "ar1" "intercept" $ mask : logi [1:2] TRUE TRUE $ loglik : num -185 $ aic : num 376 $ arma : int [1:7] 1 0 0 0 128 0 0 $ residuals: Time-Series [1:128] from 0 to 0.992: -1.133 0.338 1.477 0.406 -0.54 ... $ call : language arima(x = xx, order = c(1, 0, 0)) $ series : chr "xx" $ code : int 0 $ n.cond : int 0 $ model :List of 10 ..$ phi : num -0.0818 ..$ theta: num(0) ..$ Delta: num(0) ..$ Z : num 1 ..$ a : num 0.156 ..$ P : num [1, 1] 0 ..$ T : num [1, 1] -0.0818 ..$ V : num [1, 1] 1 ..$ h : num 0 ..$ Pn : num [1, 1] 1 - attr(*, "class")= chr "Arima" > predict(xx.ar,n.ahead=3) $pred Time Series: Start = c(1, 1) End = c(1, 3) Frequency = 128 [1] 0.05346814 0.06728105 0.06615104 $se Time Series: Start = c(1, 1) End = c(1, 3) Frequency = 128 [1] 1.028302 1.031737 1.031760 > Thanks for any help. Sincerely, Erin -- Erin Hodgess Associate Professor Department of Computer and Mathematical Sciences University of Houston - Downtown mailto: erinm.hodg...@gmail.com [[alternative HTML version deleted]] ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.