The values of 'x' an 'm' from res2. For more information, you can check ?rbeta. I also don't get what you are up to. If you want to create 1000 random samples for each combinations of x, m lapply(lapply(unique(apply(cbind(res2$x,res2$m),1,paste,collapse="")),function(i) as.numeric(unlist(strsplit(i,"")))),function(x) rbeta(1000,0.2+x[1],0.8+x[2]-x[1]))
A.K. ________________________________ From: Joanna Zhang <zjoanna2...@gmail.com> To: arun <smartpink...@yahoo.com> Sent: Tuesday, February 26, 2013 10:37 PM Subject: Re: [R] cumulative sum by group and under some criteria I don't get it What values of x and m are used here? I thought it should create 1000 random samples from the beta distribution for each combination of x,m in the data and this is what I wanted. In the code, it is creating 1000 values in total from the combination of values from x, m, Pm2<-rbeta(1000, 0.2+res2$x, 0.8+res2$m-res2$x) length(Pm2) #[1] 1000 On Tue, Feb 26, 2013 at 8:56 PM, arun <smartpink...@yahoo.com> wrote: ?? > > > >________________________________ > From: Joanna Zhang <zjoanna2...@gmail.com> >To: arun <smartpink...@yahoo.com> >Sent: Tuesday, February 26, 2013 9:51 PM > >Subject: Re: [R] cumulative sum by group and under some criteria > > > >Hi, > ># >Pm2<-rbeta(1000, 0.2+1, 0.8+3) #obs4 >this is for x=1, m=2 > > length(Pm2) >>#[1] 1000 >> >> >>Pn2<-rbeta(1000, 0.2, 0.8+4) >> length(Pn2) >>#[1] 1000 >>Here, you are creating Pm2 or Pn2 from a single observation. >> >>In the code, it is creating 1000 values in total from the combination of >>values from x, m, >> Pm2<-rbeta(1000, 0.2+res2$x, 0.8+res2$m-res2$x) >> length(Pm2) >>#[1] 1000 >> >>I don't get it here. What values of x and m are used here? I thought it >>should create 1000 observations for each combination of x,m in the data and >>this is what I want. >> > >A.K. >> >> >> >>----- Original Message ----- >> >>From: Zjoanna <zjoanna2...@gmail.com> >>To: r-help@r-project.org >>Cc: >> >>Sent: Tuesday, February 26, 2013 3:13 PM >>Subject: Re: [R] cumulative sum by group and under some criteria >> >> >>Hi Arun >> >>I noticed that the values of Fmm, Fnn, and other corresponding variables >>are not correct, for example, for the 4th obs after you run this code, the >>Fmm is 0.40, but if you use the x, m, y, n in the 4th row to calculate >>them, the results are not consistent, same for the 5th obs. >> >>#check >># >>Pm2<-rbeta(1000, 0.2+1, 0.8+3) #obs4 >>Pn2<-rbeta(1000, 0.2, 0.8+4) >>Fm2<- ecdf(Pm2) >>Fn2<- ecdf(Pn2) >>Fmm2<-Fm2(1/4) >>Fnn2<-Fn2(0) >>Fmm2 #0.582 >>Fnn2 #0 >> >> >>Pm2<-rbeta(1000, 0.2+1, 0.8+3) #obs5 >>Pn2<-rbeta(1000, 0.2+1, 0.8+3) >>Fm2<- ecdf(Pm2) >>Fn2<- ecdf(Pn2) >>Fmm2<-Fm2(1/4) >>Fnn2<-Fn2(1/4) >>Fmm2 #0.404 >>Fnn2 #0.416 >> >> >> >>On Sat, Feb 23, 2013 at 10:53 PM, arun kirshna [via R] < >>ml-node+s789695n4659514...@n4.nabble.com> wrote: >> >>> Hi, >>> d3<-structure(list(m1 = c(2, 3, 2), n1 = c(2, 2, 3), cterm1_P0L = >>> c(0.9025, >>> 0.857375, 0.9025), cterm1_P1L = c(0.64, 0.512, 0.64), cterm1_P0H = >>> c(0.9025, >>> 0.9025, 0.857375), cterm1_P1H = c(0.64, 0.64, 0.512)), .Names = c("m1", >>> "n1", "cterm1_P0L", "cterm1_P1L", "cterm1_P0H", "cterm1_P1H"), row.names = >>> c(NA, >>> 3L), class = "data.frame") >>> d2<- data.frame() >>> for (m1 in 2:3) { >>> for (n1 in 2:3) { >>> for (x1 in 0:(m1-1)) { >>> for (y1 in 0:(n1-1)) { >>> for (m in (m1+2): (7-n1)){ >>> for (n in (n1+2):(9-m)){ >>> for (x in x1:(x1+m-m1)){ >>> for(y in y1:(y1+n-n1)){ >>> d2<- rbind(d2,c(m1,n1,x1,y1,m,n,x,y)) >>> }}}}}}}} >>> colnames(d2)<-c("m1","n1","x1","y1","m","n","x","y") >>> #or >>> >>> res1<-do.call(rbind,lapply(unique(d3$m1),function(m1) >>> do.call(rbind,lapply(unique(d3$n1),function(n1) >>> do.call(rbind,lapply(0:(m1-1),function(x1) >>> do.call(rbind,lapply(0:(n1-1),function(y1) >>> do.call(rbind,lapply((m1+2):(7-n1),function(m) >>> do.call(rbind,lapply((n1+2):(9-m),function(n) >>> do.call(rbind,lapply(x1:(x1+m-m1), function(x) >>> do.call(rbind,lapply(y1:(y1+n-n1), function(y) >>> expand.grid(m1,n1,x1,y1,m,n,x,y)) ))))))))))))))) >>> names(res1)<- c("m1","n1","x1","y1","m","n","x","y") >>> attr(res1,"out.attrs")<-NULL >>> res1[]<- sapply(res1,as.integer) >>> >>> library(plyr) >>> res2<- join(res1,d3,by=c("m1","n1"),type="inner") >>> >>> #Assuming that these are the values you used: >>> >>> p0L<-0.05 >>> p0H<-0.05 >>> p1L<-0.20 >>> p1H<-0.20 >>> res2<- within(res2,{p1<- x/m; p2<- y/n;term2_p0<-dbinom(x1,m1, p0L, >>> log=FALSE)* dbinom(y1,n1,p0H, log=FALSE)*dbinom(x-x1,m-m1, p0L, log=FALSE)* >>> dbinom(y-y1,n-n1,p0H, log=FALSE);term2_p1<- dbinom(x1,m1, p1L, log=FALSE)* >>> dbinom(y1,n1,p1H, log=FALSE)*dbinom(x-x1,m-m1, p1L, log=FALSE)* >>> dbinom(y-y1,n-n1,p1H, log=FALSE);Pm2<-rbeta(240, 0.2+x, >>> 0.8+m-x);Pn2<-rbeta(240, 0.2+y, 0.8+n-y)}) >>> Fm2<- ecdf(res2$Pm2) >>> Fn2<- ecdf(res2$Pn2) >>> >>> res3<- within(res2,{Fmm2<-Fm2(p1);Fnn2<- Fn2(p2);R2<- (Fmm2+Fnn2)/2}) #not >>> sure about this step especially the Fm2() or Fn2() >>> res3$Fmm_f2<-apply(res3[,c("R2","Fmm2")],1,min) >>> res3$Fnn_f2<-apply(res3[,c("R2","Fnn2")],1,max) >>> res3<- within(res3,{Qm2<- 1-Fmm_f2;Qn2<- 1-Fnn_f2}) >>> head(res3) >>> # m1 n1 x1 y1 m n x y cterm1_P0L cterm1_P1L cterm1_P0H cterm1_P1H >>> Pn2 >>> #1 2 2 0 0 4 4 0 0 0.9025 0.64 0.9025 0.64 >>> 0.001084648 >>> #2 2 2 0 0 4 4 0 1 0.9025 0.64 0.9025 0.64 >>> 0.504593909 >>> #3 2 2 0 0 4 4 0 2 0.9025 0.64 0.9025 0.64 >>> 0.541379357 >>> #4 2 2 0 0 4 4 1 0 0.9025 0.64 0.9025 0.64 >>> 0.138947785 >>> #5 2 2 0 0 4 4 1 1 0.9025 0.64 0.9025 0.64 >>> 0.272364957 >>> #6 2 2 0 0 4 4 1 2 0.9025 0.64 0.9025 0.64 >>> 0.761635059 >>> # Pm2 term2_p1 term2_p0 p2 p1 R2 Fnn2 Fmm2 >>> #1 1.212348e-05 0.16777216 0.6634204313 0.00 0.00 0.0000000 0.0000000 0.0 >>> #2 1.007697e-03 0.08388608 0.0698337296 0.25 0.00 0.1791667 0.3583333 0.0 >>> #3 1.106946e-05 0.01048576 0.0018377297 0.50 0.00 0.3479167 0.6958333 0.0 >>> # 2.086758e-01 0.08388608 0.0698337296 0.00 0.25 0.2000000 0.0000000 0.4 >>> #5 2.382179e-01 0.04194304 0.0073509189 0.25 0.25 0.3791667 0.3583333 0.4 >>> #6 4.494673e-01 0.00524288 0.0001934452 0.50 0.25 0.5479167 0.6958333 0.4 >>> # Fmm_f2 Fnn_f2 Qn2 Qm2 >>> #1 0.0000000 0.0000000 1.0000000 1.0000000 >>> #2 0.0000000 0.3583333 0.6416667 1.0000000 >>> #3 0.0000000 0.6958333 0.3041667 1.0000000 >>> #4 0.2000000 0.2000000 0.8000000 0.8000000 >>> #5 0.3791667 0.3791667 0.6208333 0.6208333 >>> #6 0.4000000 0.6958333 0.3041667 0.6000000 >>> >>> >>> A.K. >>> >>> >>> >>> >>> >>> >>> >>> ________________________________ >>> From: Joanna Zhang <[hidden >>> email]<http://user/SendEmail.jtp?type=node&node=4659514&i=0>> >>> >>> To: arun <[hidden >>> email]<http://user/SendEmail.jtp?type=node&node=4659514&i=1>> >> >>> >>> Sent: Friday, February 22, 2013 11:02 AM >>> Subject: Re: [R] cumulative sum by group and under some criteria >>> >>> >>> Thanks! Then I need to create new variables based on the res2. I can't >>> find Fmm_f1, Fnn_f2, R2, Qm2, Qn2 until running the code several times and >>> the values of Fnn_f2, Fmm_f2 are correct. >>> >>> attach(res2) >>> res2$p1<-x/m >>> res2$p2<-y/n >>> res2$term2_p0 <- dbinom(x1,m1, p0L, log=FALSE)* dbinom(y1,n1,p0H, >>> log=FALSE)*dbinom(x-x1,m-m1, p0L, log=FALSE)* dbinom(y-y1,n-n1,p0H, >>> log=FALSE) >>> res2$term2_p1 <- dbinom(x1,m1, p1L, log=FALSE)* dbinom(y1,n1,p1H, >>> log=FALSE)*dbinom(x-x1,m-m1, p1L, log=FALSE)* dbinom(y-y1,n-n1,p1H, >>> log=FALSE) >>> Pm2<-rbeta(1000, 0.2+x, 0.8+m-x) >>> Fm2<-ecdf(Pm2) >>> res2$Fmm2<-Fm2(x/m) #not correct, it comes out after running code two >>> times >>> Pn2<-rbeta(1000, 0.2+y, 0.8+n-y) >>> Fn2<-ecdf(Pn2) >>> res2$Fnn2<-Fn2(y/n) >>> res2$R2<-(Fmm2+Fnn2)/2 >>> res2$Fmm_f2<-min(R2,Fmm2) # not correct >>> res2$Fnn_f2<-max(R2,Fnn2) >>> res2$Qm2<-(1-Fmm_f2) >>> res2$Qn2<-(1-Fnn_f2) >>> detach(res2) >>> res2 >>> head(res2) >>> >>> >>> >>> On Tue, Feb 19, 2013 at 4:09 PM, arun <[hidden >>> email]<http://user/SendEmail.jtp?type=node&node=4659514&i=2>> >> >>> wrote: >>> >>> Hi, >>> >>> > >>> >""suppose that I have a dataset 'd' >>> > m1 n1 A B C D >>> >1 2 2 0.902500 0.640 0.9025 0.64 >>> >2 3 2 0.857375 0.512 0.9025 0.64 >>> >I want to add x1 (from 0 to m1), y1(from 0 to n1), m (range from >>> >m1+2 to 7-n1), n(from n1+2 to 9-m), x (x1 to x1+m-m1), y(y1 to y1+n-n1), >>> expanding to another dataset 'd2' based on each row (combination of m1 >>> >and n1)"" >>> > >>> > >>> >Try: >>> > >>> > >>> > d<-read.table(text=" >>> > >>> >m1 n1 A B C D >>> >1 2 2 0.902500 0.640 0.9025 0.64 >>> >2 3 2 0.857375 0.512 0.9025 0.64 >>> >",sep="",header=TRUE) >>> > >>> >vec1<- paste(d[,1],d[,2],d[,3],d[,4],d[,5],d[,6]) >>> >res1<- do.call(rbind,lapply(vec1,function(m1) >>> do.call(rbind,lapply(0:(as.numeric(substr(m1,1,1))),function(x1) >>> do.call(rbind,lapply(0:(as.numeric(substr(m1,3,3))),function(y1) >>> do.call(rbind,lapply((as.numeric(substr(m1,1,1))+2):(7-as.numeric(substr(m1,3,3))),function(m) >>> do.call(rbind,lapply((as.numeric(substr(m1,3,3))+2):(9-m),function(n) >>> > >>> > do.call(rbind,lapply(x1:(x1+m-as.numeric(substr(m1,1,1))), function(x) >>> > do.call(rbind,lapply(y1:(y1+n-as.numeric(substr(m1,3,3))), function(y) >>> > expand.grid(m1,x1,y1,m,n,x,y)) ))))))))))))) >>> > >>> names(res1)<- c("group","x1","y1","m","n","x","y") >>> >>> > res1$m1<- NA; res1$n1<- NA; res1$A<- NA; res1$B<- NA; res1$C<- NA;res1$D >>> <- NA >>> >res1[,8:13]<-do.call(rbind,lapply(strsplit(as.character(res1$group)," >>> "),as.numeric)) >>> >res2<- res1[,c(8:9,2:7,10:13)] >>> > >>> > >>> > head(res2) >>> ># m1 n1 x1 y1 m n x y A B C D >>> >#1 2 2 0 0 4 4 0 0 0.9025 0.64 0.9025 0.64 >>> >#2 2 2 0 0 4 4 0 1 0.9025 0.64 0.9025 0.64 >>> >#3 2 2 0 0 4 4 0 2 0.9025 0.64 0.9025 0.64 >>> >#4 2 2 0 0 4 4 1 0 0.9025 0.64 0.9025 0.64 >>> >#5 2 2 0 0 4 4 1 1 0.9025 0.64 0.9025 0.64 >>> >#6 2 2 0 0 4 4 1 2 0.9025 0.64 0.9025 0.64 >>> > >>> > >>> > >>> > >>> > >>> > >>> >________________________________ >>> >From: Joanna Zhang <[hidden >>> >email]<http://user/SendEmail.jtp?type=node&node=4659514&i=3>> >>> >>> >To: arun <[hidden >>> >email]<http://user/SendEmail.jtp?type=node&node=4659514&i=4>> >> >>> >>> >Sent: Tuesday, February 19, 2013 11:43 AM >>> > >>> >Subject: Re: [R] cumulative sum by group and under some criteria >>> > >>> > >>> >Thanks. I can get the data I expected (get rid of the m1=3, n1=3) using >>> the join and 'inner' code, but just curious about the way to expand the >>> data. There should be a way to expand the data based on each row >>> (combination of the variables), unique(d3$m1 & d3$n1) ?. >>> > >>> >or is there a way to use 'data.frame' and 'for' loop to expand directly >>> from the data? like res1<-data.frame (d3) for () {.... >>> > >>> > >>> >On Tue, Feb 19, 2013 at 9:55 AM, arun <[hidden >>> >email]<http://user/SendEmail.jtp?type=node&node=4659514&i=5>> >> >>> wrote: >>> > >>> >If you can provide me the output that you expect with all the rows of the >>> combination in the res2, I can take a look. >>> >> >>> >> >>> >> >>> >> >>> >> >>> >> >>> >>________________________________ >>> >> >>> >>From: Joanna Zhang <[hidden >>> >>email]<http://user/SendEmail.jtp?type=node&node=4659514&i=6>> >>> >>> >>To: arun <[hidden >>> >>email]<http://user/SendEmail.jtp?type=node&node=4659514&i=7>> >> >>> >>> >> >>> >>Sent: Tuesday, February 19, 2013 10:42 AM >>> >> >>> >>Subject: Re: [R] cumulative sum by group and under some criteria >>> >> >>> >> >>> >>Thanks. But I thougth the expanded dataset 'res1' should not have >>> combination of m1=3 and n1=3 because it is based on dataset 'd3' which >>> doesn't have m1=3 and n1=3, right?> >>> >>>In the example that you provided: >>> >>> (m1+2):(maxN-(n1+2)) >>> >>>#[1] 5 >>> >>> (n1+2):(maxN-5) >>> >>>#[1] 4 >>> >>>#Suppose >>> >>> x1<- 4 >>> >>> y1<- 2 >>> >>> x1:(x1+5-m1) >>> >>>#[1] 4 5 6 >>> >>> y1:(y1+4-n1) >>> >>>#[1] 2 3 4 >>> >>> >>> >>> datnew<-expand.grid(5,4,4:6,2:4) >>> >>> colnames(datnew)<- c("m","n","x","y") >>> >>>datnew<-within(datnew,{p1<- x/m;p2<-y/n}) >>> >>>res<-cbind(datnew,d2[rep(1:nrow(d2),nrow(datnew)),]) >>> >>> row.names(res)<- 1:nrow(res) >>> >>> res >>> >>># m n x y p2 p1 m1 n1 cterm1_P1L cterm1_P0H >>> >>>#1 5 4 4 2 0.50 0.8 3 2 0.00032 0.0025 >>> >>>#2 5 4 5 2 0.50 1.0 3 2 0.00032 0.0025 >>> >>>#3 5 4 6 2 0.50 1.2 3 2 0.00032 0.0025 >>> >>>#4 5 4 4 3 0.75 0.8 3 2 0.00032 0.0025 >>> >>>#5 5 4 5 3 0.75 1.0 3 2 0.00032 0.0025 >>> >>>#6 5 4 6 3 0.75 1.2 3 2 0.00032 0.0025 >>> >>>#7 5 4 4 4 1.00 0.8 3 2 0.00032 0.0025 >>> >>>#8 5 4 5 4 1.00 1.0 3 2 0.00032 0.0025 >>> >>>#9 5 4 6 4 1.00 1.2 3 2 0.00032 0.0025 >>> >>> >>> >>>A.K. >>> >>> >>> >>> >>> >>> >>> >>> >>> >>> >>> >>>----- Original Message ----- >>> >>>From: Zjoanna <[hidden >>> >>>email]<http://user/SendEmail.jtp?type=node&node=4659514&i=8>> >>> >>> >>>To: [hidden email]<http://user/SendEmail.jtp?type=node&node=4659514&i=9> >> >>> >>>Cc: >>> >>> >>> >>>Sent: Sunday, February 10, 2013 6:04 PM >>> >>>Subject: Re: [R] cumulative sum by group and under some criteria >>> >>> >>> >>> >>> >>>Hi, >>> >>>How to expand or loop for one variable n based on another variable? for >>> >>>example, I want to add m (from m1 to maxN- n1-2) and for each m, I want >>> to >>> >>>add n (n1+2 to maxN-m), and similarly add x and y, then I need to do >>> some >>> >>>calculations. >>> >>> >>> >>>d3<-data.frame(d2) >>> >>> for (m in (m1+2):(maxN-(n1+2)){ >>> >>> for (n in (n1+2):(maxN-m)){ >>> >>> for (x in x1:(x1+m-m1)){ >>> >>> for (y in y1:(y1+n-n1)){ >>> >>> p1<- x/m >>> >>> p2<- y/n >>> >>>}}}} >>> >>> >>> >>>On Thu, Feb 7, 2013 at 12:16 AM, arun kirshna [via R] < >>> >>>[hidden email] <http://user/SendEmail.jtp?type=node&node=4659514&i=10>> >> >>> wrote: >>> >>> >>> >>>> Hi, >>> >>>> >>> >>>> Anyway, just using some random combinations: >>> >>>> dnew<- expand.grid(4:10,5:10,6:10,3:7,4:5,6:8) >>> >>>> names(dnew)<-c("m","n","x1","y1","x","y") >>> >>>> resF<- cbind(dnew,d2[rep(1:nrow(d2),nrow(dnew)),]) >>> >>>> >>> >>>> row.names(resF)<- 1:nrow(resF) >>> >>>> head(resF) >>> >>>> # m n x1 y1 x y m1 n1 cterm1_P1L cterm1_P0H >>> >>>> #1 4 5 6 3 4 6 3 2 0.00032 0.0025 >>> >>>> #2 5 5 6 3 4 6 3 2 0.00032 0.0025 >>> >>>> #3 6 5 6 3 4 6 3 2 0.00032 0.0025 >>> >>>> #4 7 5 6 3 4 6 3 2 0.00032 0.0025 >>> >>>> #5 8 5 6 3 4 6 3 2 0.00032 0.0025 >>> >>>> #6 9 5 6 3 4 6 3 2 0.00032 0.0025 >>> >>>> >>> >>>> nrow(resF) >>> >>>> #[1] 6300 >>> >>>> I am not sure what you want to do with this. >>> >>>> A.K. >>> >>>> ________________________________ >>> >>>> From: Joanna Zhang <[hidden email]< >>> http://user/SendEmail.jtp?type=node&node=4657773&i=0>> >>> >>>> >>> >>>> To: arun <[hidden email]< >>> http://user/SendEmail.jtp?type=node&node=4657773&i=1>> >>> >>> >>> >>>> >>> >>>> Sent: Wednesday, February 6, 2013 10:29 AM >>> >>>> Subject: Re: cumulative sum by group and under some criteria >>> >>>> >>> >>>> >>> >>>> Hi, >>> >>>> >>> >>>> Thanks! I need to do some calculations in the expended data, the >>> expended >>> >>>> data would be very large, what is an efficient way, doing >>> calculations >>> >>>> while expending the data, something similiar with the following, or >>> >>>> expending data using the code in your message and then add >>> calculations in >>> >>>> the expended data? >>> >>>> >>> >>>> d3<-data.frame(d2) >>> >>>> for .......{ >>> >>>> for { >>> >>>> for .... { >>> >>>> for .....{ >>> >>>> p1<- x/m >>> >>>> p2<- y/n >>> >>>> .......... >>> >>>> }} >>> >>>> }} >>> >>>> >>> >>>> I also modified your code for expending data: >>> >>>> dnew<-expand.grid((m1+2):(maxN-(n1+2)),(n1+2):(maxN-m),0:m1,0:n1, >>> >>>> x1:(x1+m-m1),y1:(y1+n-n1)) >>> >>>> names(dnew)<-c("m","n","x1","y1","x","y") >>> >>>> dnew >>> >>>> resF<-cbind(dnew[,c(2,1)],d2[rep(1:nrow(d2),nrow(dnew)),]) # this >>> is >>> >>>> not correct, how to modify it. >>> >>>> resF >>> >>>> row.names(resF)<-1:nrow(resF) >>> >>>> resF >>> >>>> >>> >>>> >>> >>>> >>> >>>> >>> >>>> On Tue, Feb 5, 2013 at 2:46 PM, arun <[hidden email]< >>> http://user/SendEmail.jtp?type=node&node=4657773&i=2>> >>> >>> >>> >>>> wrote: >>> >>>> >>> >>>> Hi, >>> >>>> >>> >>>> > >>> >>>> >You can reduce the steps to reach d2: >>> >>>> >res3<- >>> >>>> with(res2,aggregate(cbind(cterm1_P1L,cterm1_P0H),by=list(m1,n1),max)) >>> >>>> > >>> >>>> >#Change it to: >>> >>>> >res3new<- aggregate(.~m1+n1,data=res2[,c(1:2,12:13)],max) >>> >>>> >res3new >>> >>>> > m1 n1 cterm1_P1L cterm1_P0H >>> >>>> >1 2 2 0.01440 0.00273750 >>> >>>> >2 3 2 0.00032 0.00250000 >>> >>>> >3 2 3 0.01952 0.00048125 >>> >>>> >d2<-res3new[res3new[,3]<0.01 & res3new[,4]<0.01,] >>> >>>> > >>> >>>> > dnew<-expand.grid(4:10,5:10) >>> >>>> > names(dnew)<-c("n","m") >>> >>>> >resF<-cbind(dnew[,c(2,1)],d2[rep(1:nrow(d2),nrow(dnew)),]) >>> >>>> > >>> >>>> >row.names(resF)<-1:nrow(resF) >>> >>>> > head(resF) >>> >>>> ># m n m1 n1 cterm1_P1L cterm1_P0H >>> >>>> >#1 5 4 3 2 0.00032 0.0025 >>> >>>> >#2 5 5 3 2 0.00032 0.0025 >>> >>>> >#3 5 6 3 2 0.00032 0.0025 >>> >>>> >#4 5 7 3 2 0.00032 0.0025 >>> >>>> >#5 5 8 3 2 0.00032 0.0025 >>> >>>> >#6 5 9 3 2 0.00032 0.0025 >>> >>>> > >>> >>>> >A.K. >>> >>>> > >>> >>>> >________________________________ >>> >>>> >From: Joanna Zhang <[hidden email]< >>> http://user/SendEmail.jtp?type=node&node=4657773&i=3>> >>> >>>> >>> >>>> >To: arun <[hidden email]< >>> http://user/SendEmail.jtp?type=node&node=4657773&i=4>> >>> >>> >>> >>>> >>> >>>> >Sent: Tuesday, February 5, 2013 2:48 PM >>> >>>> > >>> >>>> >Subject: Re: cumulative sum by group and under some criteria >>> >>>> > >>> >>>> > >>> >>>> > Hi , >>> >>>> >what I want is : >>> >>>> >m n m1 n1 cterm1_P1L cterm1_P0H >>> >>>> > 5 4 3 2 0.00032 0.00250000 >>> >>>> > 5 5 3 2 0.00032 0.00250000 >>> >>>> > 5 6 3 2 0.00032 0.00250000 >>> >>>> > 5 7 3 2 0.00032 0.00250000 >>> >>>> > 5 8 3 2 0.00032 0.00250000 >>> >>>> > 5 9 3 2 0.00032 0.00250000 >>> >>>> >5 10 3 2 0.00032 0.00250000 >>> >>>> >6 4 3 2 0.00032 0.00250000 >>> >>>> >6 5 3 2 0.00032 0.00250000 >>> >>>> >6 6 3 2 0.00032 0.00250000 >>> >>>> >6 7 3 2 0.00032 0.00250000 >>> >>>> >..... >>> >>>> >6 10 3 2 0.00032 0.00250000 >>> >>>> > >>> >>>> > >>> >>>> > >>> >>>> >On Tue, Feb 5, 2013 at 1:12 PM, arun <[hidden email]< >>> http://user/SendEmail.jtp?type=node&node=4657773&i=5>> >>> >>> >>> >>>> wrote: >>> >>>> > >>> >>>> >Hi, >>> >>>> >> >>> >>>> >>Saw your message on Nabble. >>> >>>> >> >>> >>>> >> >>> >>>> >>"I want to add some more columns based on the results. Is the >>> following >>> >>>> code good way to create such a data frame and How to see the column m >>> and n >>> >>>> in the updated data? >>> >>>> >> >>> >>>> >>d2<- reres3[res3[,3]<0.01 & res3[,4]<0.01,] >>> >>>> >># should be a typo >>> >>>> >> >>> >>>> >>colnames(d2)[1:2]<- c("m1","n1"); >>> >>>> >>d2 #already a data.frame >>> >>>> >> >>> >>>> >>d3<-data.frame(d2) >>> >>>> >> for (m in (m1+2):10){ >>> >>>> >> for (n in (n1+2):10){ >>> >>>> >> d3<-rbind(d3, c(d2))}}" #this is not making much sense to me. >>> >>>> Especially, you mentioned you wanted add more columns. >>> >>>> >>#Running this step gave error >>> >>>> >>#Error: object 'm1' not found >>> >>>> >> >>> >>>> >>Not sure what you want as output. >>> >>>> >>Could you show the ouput that is expected: >>> >>>> >> >>> >>>> >>A.K. >>> >>>> >> >>> >>>> >> >>> >>>> >> >>> >>>> >> >>> >>>> >> >>> >>>> >> >>> >>>> >> >>> >>>> >> >>> >>>> >>________________________________ >>> >>>> >>From: Joanna Zhang <[hidden email]< >>> http://user/SendEmail.jtp?type=node&node=4657773&i=6>> >>> >>>> >>> >>>> >>To: arun <[hidden email]< >>> http://user/SendEmail.jtp?type=node&node=4657773&i=7>> >>> >>> >>> >>>> >>> >>>> >>Sent: Tuesday, February 5, 2013 10:23 AM >>> >>>> >> >>> >>>> >>Subject: Re: cumulative sum by group and under some criteria >>> >>>> >> >>> >>>> >> >>> >>>> >>Hi, >>> >>>> >> >>> >>>> >>Yes, I changed code. You answered the questions. But how can I put >>> two >>> >>>> criteria in the code, if both the maximum value of cterm1_p1L <= 0.01 >>> and >>> >>>> cterm1_p1H <=0.01, the output the m1,n1. >>> >>>> >> >>> >>>> >> >>> >>>> >> >>> >>>> >> >>> >>>> >>On Tue, Feb 5, 2013 at 8:47 AM, arun <[hidden email]< >>> http://user/SendEmail.jtp?type=node&node=4657773&i=8>> >>> >>> >>> >>>> wrote: >>> >>>> >> >>> >>>> >> >>> >>>> >>> >>> >>>> >>> HI, >>> >>>> >>> >>> >>>> >>> >>> >>>> >>>I am not getting the same results as yours: You must have changed >>> the >>> >>>> dataset. >>> >>>> >>> res2[,1:2][res2$cterm1_P1L<0.6 & res2$cterm1_P0H<0.95,] >>> >>>> >>> m1 n1 >>> >>>> >>>1 2 2 >>> >>>> >>>2 2 2 >>> >>>> >>>3 2 2 >>> >>>> >>>4 2 2 >>> >>>> >>>5 2 2 >>> >>>> >>>6 2 2 >>> >>>> >>>7 2 2 >>> >>>> >>>8 2 2 >>> >>>> >>>9 2 2 >>> >>>> >>>10 3 2 >>> >>>> >>>11 3 2 >>> >>>> >>>12 3 2 >>> >>>> >>>13 3 2 >>> >>>> >>>14 3 2 >>> >>>> >>>15 3 2 >>> >>>> >>>16 3 2 >>> >>>> >>>17 3 2 >>> >>>> >>>18 3 2 >>> >>>> >>>19 3 2 >>> >>>> >>>20 3 2 >>> >>>> >>>21 3 2 >>> >>>> >>>22 2 3 >>> >>>> >>>23 2 3 >>> >>>> >>>24 2 3 >>> >>>> >>>25 2 3 >>> >>>> >>>26 2 3 >>> >>>> >>>27 2 3 >>> >>>> >>>28 2 3 >>> >>>> >>>29 2 3 >>> >>>> >>>30 2 3 >>> >>>> >>>31 2 3 >>> >>>> >>>32 2 3 >>> >>>> >>>33 2 3 >>> >>>> >>> >>> >>>> >>> >>> >>>> >>>Regarding the maximum value within each block, haven't I answered >>> in >>> >>>> the earlier post. >>> >>>> >>> >>> >>>> >>>aggregate(cterm1_P1L~m1+n1,data=res2,max) >>> >>>> >>># m1 n1 cterm1_P1L >>> >>>> >>>#1 2 2 0.01440 >>> >>>> >>>#2 3 2 0.00032 >>> >>>> >>>#3 2 3 0.01952 >>> >>>> >>> >>> >>>> >>> >>> >>>> >>> >>> with(res2,aggregate(cbind(cterm1_P1L,cterm1_P0H),by=list(m1,n1),max)) >>> >>>> >>># Group.1 Group.2 cterm1_P1L cterm1_P0H >>> >>>> >>>#1 2 2 0.01440 0.00273750 >>> >>>> >>>#2 3 2 0.00032 0.00250000 >>> >>>> >>>#3 2 3 0.01952 0.00048125 >>> >>>> >>> >>> >>>> >>> >>> >>>> >>>A.K. >>> >>>> >>> >>> >>>> >>> >>> >>>> >>>----- Original Message ----- >>> >>> >>> >>>> >>>From: "[hidden email]< >>> http://user/SendEmail.jtp?type=node&node=4657773&i=9>";;;;; >>> >>>> <[hidden email] < >>> http://user/SendEmail.jtp?type=node&node=4657773&i=10>> >>> >>>> >>>To: [hidden email]< >>> http://user/SendEmail.jtp?type=node&node=4657773&i=11> >>> >>>> >>>Cc: >>> >>>> >>> >>> >>>> >>>Sent: Tuesday, February 5, 2013 9:33 AM >>> >>>> >>>Subject: Re: cumulative sum by group and under some criteria >>> >>>> >>> >>> >>>> >>>Hi, >>> >>>> >>>If use this >>> >>>> >>> >>> >>>> >>>res2[,1:2][res2$cterm1_P1L<0.6 & res2$cterm1_P0H<0.95,] >>> >>>> >>> >>> >>>> >>>the results are the following, but actually only m1=3, n1=2 >>> sastify the >>> >>>> criteria, as I need to look at the row with maximum value within each >>> >>>> block,not every row. >>> >>>> >>> >>> >>>> >>> >>> >>>> >>> m1 n1 >>> >>>> >>>1 2 2 >>> >>>> >>>10 3 2 >>> >>>> >>>11 3 2 >>> >>>> >>>12 3 2 >>> >>>> >>>13 3 2 >>> >>>> >>>14 3 2 >>> >>>> >>>15 3 2 >>> >>>> >>>16 3 2 >>> >>>> >>>17 3 2 >>> >>>> >>>18 3 2 >>> >>>> >>>19 3 2 >>> >>>> >>>20 3 2 >>> >>>> >>>21 3 2 >>> >>>> >>>22 2 3 >>> >>>> >>>23 2 3 >>> >>>> >>> >>> >>>> >>> >>> >>>> >>><quote author='arun kirshna'> >>> >>>> >>> >>> >>>> >>> >>> >>>> >>> >>> >>>> >>>Hi, >>> >>>> >>>Thanks. This extract every row that satisfy the condition, but I >>> need >>> >>>> look >>> >>>> >>>at the last row (the maximum of cumulative sum) for each block >>> (m1,n1). >>> >>>> for >>> >>>> >>>example, if I set the criteria >>> >>>> >>> >>> >>>> >>>res2$cterm1_P1L<0.6 & res2$cterm1_P0H<0.95, this should extract >>> m1= 3, >>> >>>> n1 = >>> >>>> >>>2. >>> >>>> >>> >>> >>>> >>> >>> >>>> >>>Hi, >>> >>>> >>>I am not sure I understand your question. >>> >>>> >>>res2$cterm1_P1L<0.6 & res2$cterm1_P0H<0.95 >>> >>>> >>> #[1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE >>> TRUE >>> >>>> TRUE >>> >>>> >>>TRUE >>> >>>> >>>#[16] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE >>> TRUE >>> >>>> TRUE >>> >>>> >>>TRUE >>> >>>> >>>#[31] TRUE TRUE TRUE >>> >>>> >>> >>> >>>> >>>This will extract all the rows. >>> >>>> >>> >>> >>>> >>> >>> >>>> >>>res2[,1:2][res2$cterm1_P1L<0.01 & res2$cterm1_P1L!=0,] >>> >>>> >>># m1 n1 >>> >>>> >>>#21 3 2 >>> >>>> >>>This extract only the row you wanted. >>> >>>> >>> >>> >>>> >>>For the different groups: >>> >>>> >>> >>> >>>> >>>aggregate(cterm1_P1L~m1+n1,data=res2,max) >>> >>>> >>># m1 n1 cterm1_P1L >>> >>>> >>>#1 2 2 0.01440 >>> >>>> >>>#2 3 2 0.00032 >>> >>>> >>>#3 2 3 0.01952 >>> >>>> >>> >>> >>>> >>> aggregate(cterm1_P1L~m1+n1,data=res2,function(x) max(x)<0.01) >>> >>>> >>> # m1 n1 cterm1_P1L >>> >>>> >>>#1 2 2 FALSE >>> >>>> >>>#2 3 2 TRUE >>> >>>> >>>#3 2 3 FALSE >>> >>>> >>> >>> >>>> >>>res4<-aggregate(cterm1_P1L~m1+n1,data=res2,function(x) >>> max(x)<0.01) >>> >>>> >>>res4[,1:2][res4[,3],] >>> >>>> >>># m1 n1 >>> >>>> >>>#2 3 2 >>> >>>> >>> >>> >>>> >>>A.K. >>> >>>> >>> >>> >>>> >>> >>> >>>> >>> >>> >>>> >>> >>> >>>> >>>----- Original Message ----- >>> >>> >>> >>>> >>>From: "[hidden email]< >>> http://user/SendEmail.jtp?type=node&node=4657773&i=12>";;;;; >>> >>>> <[hidden email] < >>> http://user/SendEmail.jtp?type=node&node=4657773&i=13>> >>> >>>> >>>To: [hidden email]< >>> http://user/SendEmail.jtp?type=node&node=4657773&i=14> >>> >>>> >>>Cc: >>> >>>> >>>Sent: Sunday, February 3, 2013 3:58 PM >>> >>>> >>>Subject: Re: cumulative sum by group and under some criteria >>> >>>> >>> >>> >>>> >>>Hi, >>> >>>> >>>Let me restate my questions. I need to get the m1 and n1 that >>> satisfy >>> >>>> some >>> >>>> >>>criteria, for example in this case, within each group, the maximum >>> >>>> >>>cterm1_p1L ( the last row in this group) <0.01. I need to extract >>> m1=3, >>> >>>> >>>n1=2, I only need m1, n1 in the row. >>> >>>> >>> >>> >>>> >>>Also, how to create the structure from the data.frame, I am new to >>> R, I >>> >>>> need >>> >>>> >>>to change the maxN and run the loop to different data. >>> >>>> >>>Thanks very much for your help! >>> >>>> >>> >>> >>>> >>><quote author='arun kirshna'> >>> >>>> >>>HI, >>> >>>> >>> >>> >>>> >>>I think this should be more correct: >>> >>>> >>>maxN<-9 >>> >>>> >>>c11<-0.2 >>> >>>> >>>c12<-0.2 >>> >>>> >>>p0L<-0.05 >>> >>>> >>>p0H<-0.05 >>> >>>> >>>p1L<-0.20 >>> >>>> >>>p1H<-0.20 >>> >>>> >>> >>> >>>> >>>d <- structure(list(m1 = c(2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, >>> >>>> >>>2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3), >>> >>>> >>> n1 = c(2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, >>> >>>> >>> 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2), x1 = c(0, >>> >>>> >>> 0, 0, 1, 1, 1, 2, 2, 2, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, >>> >>>> >>> 2, 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3), y1 = c(0, 1, 2, 0, >>> >>>> >>> 1, 2, 0, 1, 2, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, >>> >>>> >>> 2, 0, 1, 2, 0, 1, 2, 0, 1, 2), Fmm = c(0, 0, 0, 0.7, 0.59, >>> >>>> >>> 0.64, 1, 1, 1, 0, 0, 0, 0, 0.63, 0.7, 0.74, 0.68, 1, 1, 1, >>> >>>> >>> 1, 0, 0, 0, 0.62, 0.63, 0.6, 0.63, 0.6, 0.68, 1, 1, 1), Fnn = >>> c(0, >>> >>>> >>> 0.64, 1, 0, 0.51, 1, 0, 0.67, 1, 0, 0.62, 0.69, 1, 0, 0.54, >>> >>>> >>> 0.62, 1, 0, 0.63, 0.73, 1, 0, 0.63, 1, 0, 0.7, 1, 0, 0.7, >>> >>>> >>> 1, 0, 0.58, 1), Qm = c(1, 1, 1, 0.65, 0.45, 0.36, 0.5, 0.165, >>> >>>> >>> 0, 1, 1, 1, 1, 0.685, 0.38, 0.32, 0.32, 0.5, 0.185, 0.135, >>> >>>> >>> 0, 1, 1, 1, 0.69, 0.37, 0.4, 0.685, 0.4, 0.32, 0.5, 0.21, >>> >>>> >>> 0), Qn = c(1, 0.36, 0, 0.65, 0.45, 0, 0.5, 0.165, 0, 1, 0.38, >>> >>>> >>> 0.31, 0, 0.685, 0.38, 0.32, 0, 0.5, 0.185, 0.135, 0, 1, 0.37, >>> >>>> >>> 0, 0.69, 0.3, 0, 0.685, 0.3, 0, 0.5, 0.21, 0), term1_p0 = >>> >>>> c(0.81450625, >>> >>>> >>> 0.0857375, 0.00225625, 0.0857375, 0.009025, 0.0002375, >>> 0.00225625, >>> >>>> >>> 0.0002375, 6.25e-06, 0.7737809375, 0.1221759375, >>> >>>> 0.00643031249999999, >>> >>>> >>> 0.0001128125, 0.081450625, 0.012860625, 0.000676875, >>> 1.1875e-05, >>> >>>> >>> 0.0021434375, 0.0003384375, 1.78125e-05, 3.125e-07, >>> 0.7737809375, >>> >>>> >>> 0.081450625, 0.0021434375, 0.1221759375, 0.012860625, >>> >>>> 0.0003384375, >>> >>>> >>> 0.00643031249999999, 0.000676875, 1.78125e-05, 0.0001128125, >>> >>>> >>> 1.1875e-05, 3.125e-07), term1_p1 = c(0.4096, 0.2048, 0.0256, >>> >>>> >>> 0.2048, 0.1024, 0.0128, 0.0256, 0.0128, 0.0016, 0.32768, >>> >>>> >>> 0.24576, 0.06144, 0.00512, 0.16384, 0.12288, 0.03072, 0.00256, >>> >>>> >>> 0.02048, 0.01536, 0.00384, 0.00032, 0.32768, 0.16384, 0.02048, >>> >>>> >>> 0.24576, 0.12288, 0.01536, 0.06144, 0.03072, 0.00384, 0.00512, >>> >>>> >>> 0.00256, 0.00032)), .Names = c("m1", "n1", "x1", "y1", "Fmm", >>> >>>> >>>"Fnn", "Qm", "Qn", "term1_p0", "term1_p1"), row.names = c(NA, >>> >>>> >>>33L), class = "data.frame") >>> >>>> >>> >>> >>>> >>>library(zoo) >>> >>>> >>>lst1<- split(d,list(d$m1,d$n1)) >>> >>>> >>>res2<-do.call(rbind,lapply(lst1[lapply(lst1,nrow)!=0],function(x){ >>> >>>> >>>x[,11:14]<-NA; >>> >>>> >>>x[,11:12][x$Qm<=c11,]<-cumsum(x[,9:10][x$Qm<=c11,]); >>> >>>> >>>x[,13:14][x$Qn<=c12,]<-cumsum(x[,9:10][x$Qn<=c12,]); >>> >>>> >>>colnames(x)[11:14]<- >>> >>>> c("cterm1_P0L","cterm1_P1L","cterm1_P0H","cterm1_P1H"); >>> >>>> >>>x1<-na.locf(x); >>> >>>> >>>x1[,11:14][is.na(x1[,11:14])]<-0; >>> >>>> >>>x1})) >>> >>>> >>>row.names(res2)<- 1:nrow(res2) >>> >>>> >>> >>> >>>> >>> res2 >>> >>>> >>> # m1 n1 x1 y1 Fmm Fnn Qm Qn term1_p0 term1_p1 >>> >>>> cterm1_P0L >>> >>>> >>>cterm1_P1L cterm1_P0H cterm1_P1H >>> >>>> >>> >>> >>>> >>>#1 2 2 0 0 0.00 0.00 1.000 1.000 0.8145062500 0.40960 >>> >>>> 0.0000000000 >>> >>>> >>> 0.00000 0.0000000000 0.00000 >>> >>>> >>>#2 2 2 0 1 0.00 0.64 1.000 0.360 0.0857375000 0.20480 >>> >>>> 0.0000000000 >>> >>>> >>> 0.00000 0.0000000000 0.00000 >>> >>>> >>>#3 2 2 0 2 0.00 1.00 1.000 0.000 0.0022562500 0.02560 >>> >>>> 0.0000000000 >>> >>>> >>> 0.00000 0.0022562500 0.02560 >>> >>>> >>>#4 2 2 1 0 0.70 0.00 0.650 0.650 0.0857375000 0.20480 >>> >>>> 0.0000000000 >>> >>>> >>> 0.00000 0.0022562500 0.02560 >>> >>>> >>>#5 2 2 1 1 0.59 0.51 0.450 0.450 0.0090250000 0.10240 >>> >>>> 0.0000000000 >>> >>>> >>> 0.00000 0.0022562500 0.02560 >>> >>>> >>>#6 2 2 1 2 0.64 1.00 0.360 0.000 0.0002375000 0.01280 >>> >>>> 0.0000000000 >>> >>>> >>> 0.00000 0.0024937500 0.03840 >>> >>>> >>>#7 2 2 2 0 1.00 0.00 0.500 0.500 0.0022562500 0.02560 >>> >>>> 0.0000000000 >>> >>>> >>> 0.00000 0.0024937500 0.03840 >>> >>>> >>>#8 2 2 2 1 1.00 0.67 0.165 0.165 0.0002375000 0.01280 >>> >>>> 0.0002375000 >>> >>>> >>> 0.01280 0.0027312500 0.05120 >>> >>>> >>>#9 2 2 2 2 1.00 1.00 0.000 0.000 0.0000062500 0.00160 >>> >>>> 0.0002437500 >>> >>>> >>> 0.01440 0.0027375000 0.05280 >>> >>>> >>>#10 3 2 0 0 0.00 0.00 1.000 1.000 0.7737809375 0.32768 >>> >>>> 0.0000000000 >>> >>>> >>> 0.00000 0.0000000000 0.00000 >>> >>>> >>>#11 3 2 0 1 0.00 0.63 1.000 0.370 0.0814506250 0.16384 >>> >>>> 0.0000000000 >>> >>>> >>> 0.00000 0.0000000000 0.00000 >>> >>>> >>>#12 3 2 0 2 0.00 1.00 1.000 0.000 0.0021434375 0.02048 >>> >>>> 0.0000000000 >>> >>>> >>> 0.00000 0.0021434375 0.02048 >>> >>>> >>>#13 3 2 1 0 0.62 0.00 0.690 0.690 0.1221759375 0.24576 >>> >>>> 0.0000000000 >>> >>>> >>> 0.00000 0.0021434375 0.02048 >>> >>>> >>>#14 3 2 1 1 0.63 0.70 0.370 0.300 0.0128606250 0.12288 >>> >>>> 0.0000000000 >>> >>>> >>> 0.00000 0.0021434375 0.02048 >>> >>>> >>>#15 3 2 1 2 0.60 1.00 0.400 0.000 0.0003384375 0.01536 >>> >>>> 0.0000000000 >>> >>>> >>> 0.00000 0.0024818750 0.03584 >>> >>>> >>>#16 3 2 2 0 0.63 0.00 0.685 0.685 0.0064303125 0.06144 >>> >>>> 0.0000000000 >>> >>>> >>> 0.00000 0.0024818750 0.03584 >>> >>>> >>>#17 3 2 2 1 0.60 0.70 0.400 0.300 0.0006768750 0.03072 >>> >>>> 0.0000000000 >>> >>>> >>> 0.00000 0.0024818750 0.03584 >>> >>>> >>>#18 3 2 2 2 0.68 1.00 0.320 0.000 0.0000178125 0.00384 >>> >>>> 0.0000000000 >>> >>>> >>> 0.00000 0.0024996875 0.03968 >>> >>>> >>>#19 3 2 3 0 1.00 0.00 0.500 0.500 0.0001128125 0.00512 >>> >>>> 0.0000000000 >>> >>>> >>> 0.00000 0.0024996875 0.03968 >>> >>>> >>>#20 3 2 3 1 1.00 0.58 0.210 0.210 0.0000118750 0.00256 >>> >>>> 0.0000000000 >>> >>>> >>> 0.00000 0.0024996875 0.03968 >>> >>>> >>>#21 3 2 3 2 1.00 1.00 0.000 0.000 0.0000003125 0.00032 >>> >>>> 0.0000003125 >>> >>>> >>> 0.00032 0.0025000000 0.04000 >>> >>>> >>>#22 2 3 0 0 0.00 0.00 1.000 1.000 0.7737809375 0.32768 >>> >>>> 0.0000000000 >>> >>>> >>> 0.00000 0.0000000000 0.00000 >>> >>>> >>>#23 2 3 0 1 0.00 0.62 1.000 0.380 0.1221759375 0.24576 >>> >>>> 0.0000000000 >>> >>>> >>> 0.00000 0.0000000000 0.00000 >>> >>>> >>>#24 2 3 0 2 0.00 0.69 1.000 0.310 0.0064303125 0.06144 >>> >>>> 0.0000000000 >>> >>>> >>> 0.00000 0.0000000000 0.00000 >>> >>>> >>>#25 2 3 0 3 0.00 1.00 1.000 0.000 0.0001128125 0.00512 >>> >>>> 0.0000000000 >>> >>>> >>> 0.00000 0.0001128125 0.00512 >>> >>>> >>>#26 2 3 1 0 0.63 0.00 0.685 0.685 0.0814506250 0.16384 >>> >>>> 0.0000000000 >>> >>>> >>> 0.00000 0.0001128125 0.00512 >>> >>>> >>>#27 2 3 1 1 0.70 0.54 0.380 0.380 0.0128606250 0.12288 >>> >>>> 0.0000000000 >>> >>>> >>> 0.00000 0.0001128125 0.00512 >>> >>>> >>>#28 2 3 1 2 0.74 0.62 0.320 0.320 0.0006768750 0.03072 >>> >>>> 0.0000000000 >>> >>>> >>> 0.00000 0.0001128125 0.00512 >>> >>>> >>>#29 2 3 1 3 0.68 1.00 0.320 0.000 0.0000118750 0.00256 >>> >>>> 0.0000000000 >>> >>>> >>> 0.00000 0.0001246875 0.00768 >>> >>>> >>>#30 2 3 2 0 1.00 0.00 0.500 0.500 0.0021434375 0.02048 >>> >>>> 0.0000000000 >>> >>>> >>> 0.00000 0.0001246875 0.00768 >>> >>>> >>>#31 2 3 2 1 1.00 0.63 0.185 0.185 0.0003384375 0.01536 >>> >>>> 0.0003384375 >>> >>>> >>> 0.01536 0.0004631250 0.02304 >>> >>>> >>>#32 2 3 2 2 1.00 0.73 0.135 0.135 0.0000178125 0.00384 >>> >>>> 0.0003562500 >>> >>>> >>> 0.01920 0.0004809375 0.02688 >>> >>>> >>>#33 2 3 2 3 1.00 1.00 0.000 0.000 0.0000003125 0.00032 >>> >>>> 0.0003565625 >>> >>>> >>> 0.01952 0.0004812500 0.02720 >>> >>>> >>> >>> >>>> >>>#Sorry, some values in my previous solution didn't look right. I >>> >>>> didn't >>> >>>> >>>A.K. >>> >>>> >>> >>> >>>> >>> >>> >>>> >>> >>> >>>> >>> >>> >>>> >>> >>> >>>> >>>----- Original Message ----- >>> >>>> >>>From: Zjoanna <[hidden email]< >>> http://user/SendEmail.jtp?type=node&node=4657773&i=15>> >>> >>>> >>> >>>> >>>To: [hidden email]< >>> http://user/SendEmail.jtp?type=node&node=4657773&i=16> >>> >>> >>> >>>> >>>Cc: >>> >>>> >>>Sent: Friday, February 1, 2013 12:19 PM >>> >>>> >>>Subject: Re: [R] cumulative sum by group and under some criteria >>> >>>> >>> >>> >>>> >>>Thank you very much for your reply. Your code work well with this >>> >>>> example. >>> >>>> >>>I modified a little to fit my real data, I got an error massage. >>> >>>> >>> >>> >>>> >>>Error in split.default(x = seq_len(nrow(x)), f = f, drop = drop, >>> ...) : >>> >>>> >>> Group length is 0 but data length > 0 >>> >>>> >>> >>> >>>> >>> >>> >>>> >>>On Thu, Jan 31, 2013 at 12:21 PM, arun kirshna [via R] < >>> >>>> >>>[hidden email] < >>> http://user/SendEmail.jtp?type=node&node=4657773&i=17>> >>> >>> >>> >>>> wrote: >>> >>>> >>> >>> >>>> >>>> Hi, >>> >>>> >>>> Try this: >>> >>>> >>>> colnames(d)<-c("m1","n1","x1","y1","p11","p12") >>> >>>> >>>> library(zoo) >>> >>>> >>>> res1<- >>> >>>> do.call(rbind,lapply(lapply(split(d,list(d$m1,d$n1)),function(x) >>> >>>> >>>> {x$cp11[x$x1>1]<- cumsum(x$p11[x$x1>1]);x$cp12[x$y1>1]<- >>> >>>> >>>> cumsum(x$p12[x$y1>1]);x}),function(x) >>> >>>> >>>> {x$cp11<-na.locf(x$cp11,na.rm=F);x$cp12<- >>> >>>> na.locf(x$cp12,na.rm=F);x})) >>> >>>> >>>> #there would be a warning here as one of the list element is >>> NULL. >>> >>>> The, >>> >>>> >>>> warning is okay >>> >>>> >>>> row.names(res1)<- 1:nrow(res1) >>> >>>> >>>> res1[,7:8][is.na(res1[,7:8])]<- 0 >>> >>>> >>>> res1 >>> >>>> >>>> # m1 n1 x1 y1 p11 p12 cp11 cp12 >>> >>>> >>>> #1 2 2 0 0 0.00 0.00 0.00 0.00 >>> >>>> >>>> #2 2 2 0 1 0.00 0.50 0.00 0.00 >>> >>>> >>>> #3 2 2 0 2 0.00 1.00 0.00 1.00 >>> >>>> >>>> #4 2 2 1 0 0.50 0.00 0.00 1.00 >>> >>>> >>>> #5 2 2 1 1 0.50 0.50 0.00 1.00 >>> >>>> >>>> #6 2 2 1 2 0.50 1.00 0.00 2.00 >>> >>>> >>>> #7 2 2 2 0 1.00 0.00 1.00 2.00 >>> >>>> >>>> #8 2 2 2 1 1.00 0.50 2.00 2.00 >>> >>>> >>>> #9 2 2 2 2 1.00 1.00 3.00 3.00 >>> >>>> >>>> #10 3 2 0 0 0.00 0.00 0.00 0.00 >>> >>>> >>>> #11 3 2 0 1 0.00 0.50 0.00 0.00 >>> >>>> >>>> #12 3 2 0 2 0.00 1.00 0.00 1.00 >>> >>>> >>>> #13 3 2 1 0 0.33 0.00 0.00 1.00 >>> >>>> >>>> #14 3 2 1 1 0.33 0.50 0.00 1.00 >>> >>>> >>>> #15 3 2 1 2 0.33 1.00 0.00 2.00 >>> >>>> >>>> #16 3 2 2 0 0.67 0.00 0.67 2.00 >>> >>>> >>>> #17 3 2 2 1 0.67 0.50 1.34 2.00 >>> >>>> >>>> #18 3 2 2 2 0.67 1.00 2.01 3.00 >>> >>>> >>>> #19 3 2 3 0 1.00 0.00 3.01 3.00 >>> >>>> >>>> #20 3 2 3 1 1.00 0.50 4.01 3.00 >>> >>>> >>>> #21 3 2 3 2 1.00 1.00 5.01 4.00 >>> >>>> >>>> #22 2 3 0 0 0.00 0.00 0.00 0.00 >>> >>>> >>>> #23 2 3 0 1 0.00 0.33 0.00 0.00 >>> >>>> >>>> #24 2 3 0 2 0.00 0.67 0.00 0.67 >>> >>>> >>>> #25 2 3 0 3 0.00 1.00 0.00 1.67 >>> >>>> >>>> #26 2 3 1 0 0.50 0.00 0.00 1.67 >>> >>>> >>>> #27 2 3 1 1 0.50 0.33 0.00 1.67 >>> >>>> >>>> #28 2 3 1 2 0.50 0.67 0.00 2.34 >>> >>>> >>>> #29 2 3 1 3 0.50 1.00 0.00 3.34 >>> >>>> >>>> #30 2 3 2 0 1.00 0.00 1.00 3.34 >>> >>>> >>>> #31 2 3 2 1 1.00 0.33 2.00 3.34 >>> >>>> >>>> #32 2 3 2 2 1.00 0.67 3.00 4.01 >>> >>>> >>>> #33 2 3 2 3 1.00 1.00 4.00 5.01 >>> >>>> >>>> A.K. >>> >>>> >>>> >>> >>>> >>>> ------------------------------ >>> >>>> >>>> If you reply to this email, your message will be added to the >>> >>>> discussion >>> >>>> >>>> below: >>> >>>> >>>> >>> >>>> >>>> >>> >>>> >>> http://r.789695.n4.nabble.com/cumulative-sum-by-group-and-under-some-criteria-tp4657074p4657196.html >>> >>>> >>>> To unsubscribe from cumulative sum by group and under some >>> criteria, >>> >>>> click >>> >>>> >>>> here< >>> >>>> >>> >>>> >>>> . >>> >>>> >>>> NAML< >>> >>>> >>> http://r.789695.n4.nabble.com/template/NamlServlet.jtp?macro=macro_viewer&id=instant_html%21nabble%3Aemail.naml&base=nabble.naml.namespaces.BasicNamespace-nabble.view.web.template.NabbleNamespace-nabble.view.web.template.NodeNamespace&breadcrumbs=notify_subscribers%21nabble%3Aemail.naml-instant_emails%21nabble%3Aemail.naml-send_instant_email%21nabble%3Aemail.naml> >>> >>> >>>> >>> >>>> >>>> >>> >>>> >>> >>> >>>> >>> >>> >>>> >>> >>> >>>> >>> >>> >>>> >>>-- >>> >>>> >>>View this message in context: >>> >>>> >>> >>> >>>> >>> http://r.789695.n4.nabble.com/cumulative-sum-by-group-and-under-some-criteria-tp4657074p4657315.html >>> >>>> >>>Sent from the R help mailing list archive at Nabble.com. >>> >>>> >>> [[alternative HTML version deleted]] >>> >>>> >>> >>> >>>> >>>______________________________________________ >>> >>>> >>>[hidden email] < >>> http://user/SendEmail.jtp?type=node&node=4657773&i=18>mailing list >>> >>> >>> >>>> >>>https://stat.ethz.ch/mailman/listinfo/r-help >>> >>>> >>>PLEASE do read the posting guide >>> >>>> http://www.R-project.org/posting-guide.html<http://www.r-project.org/posting-guide.html> >>> <http://www.r-project.org/posting-guide.html> >>> >>> >>> >>>> >>>and provide commented, minimal, self-contained, reproducible code. >>> >>>> >>> >>> >>>> >>> >>> >>>> >>>______________________________________________ >>> >>>> >>>[hidden email] < >>> http://user/SendEmail.jtp?type=node&node=4657773&i=19>mailing list >>> >>> >>> >>>> >>>https://stat.ethz.ch/mailman/listinfo/r-help >>> >>>> >>>PLEASE do read the posting guide >>> >>>> http://www.R-project.org/posting-guide.html<http://www.r-project.org/posting-guide.html> >>> <http://www.r-project.org/posting-guide.html> >>> >>> >>> >>>> >>>and provide commented, minimal, self-contained, reproducible code. >>> >>>> >>> >>> >>>> >>></quote> >>> >>>> >>>Quoted from: >>> >>>> >>> >>> >>>> >>> http://r.789695.n4.nabble.com/cumulative-sum-by-group-and-under-some-criteria-tp4657074p4657360.html >>> >>>> >>> >>> >>>> >>> >>> >>>> >>>______________________________________________ >>> >>>> >>>[hidden email] < >>> http://user/SendEmail.jtp?type=node&node=4657773&i=20>mailing list >>> >>> >>> >>>> >>>https://stat.ethz.ch/mailman/listinfo/r-help >>> >>>> >>>PLEASE do read the posting guide >>> >>>> http://www.R-project.org/posting-guide.html<http://www.r-project.org/posting-guide.html> >>> <http://www.r-project.org/posting-guide.html> >>> >>> >>> >>>> >>>and provide commented, minimal, self-contained, reproducible code. >>> >>>> >>> >>> >>>> >>></quote> >>> >>>> >>>Quoted from: >>> >>>> >>> >>> >>>> >>> http://r.789695.n4.nabble.com/cumulative-sum-by-group-and-under-some-criteria-tp4657074p4657582.html >>> >>>> >>> >>> >>>> >>> >>> >>>> >> >>> >>>> > >>> >>>> >>> >>>> ______________________________________________ >>> >>>> [hidden email] >>> >>>> <http://user/SendEmail.jtp?type=node&node=4657773&i=21>mailing >>> list >>> >>> >>> >>>> https://stat.ethz.ch/mailman/listinfo/r-help >>> >>>> PLEASE do read the posting guide >>> >>>> http://www.R-project.org/posting-guide.html<http://www.r-project.org/posting-guide.html> >>> <http://www.r-project.org/posting-guide.html> >>> >>> >>> >>>> and provide commented, minimal, self-contained, reproducible code. >>> >>>> >>> >>>> >>> >>> >>> >>>> ------------------------------ >>> >>>> If you reply to this email, your message will be added to the >>> >>>> discussion below: >>> >>>> >>> >>> >>> >>>> >>> http://r.789695.n4.nabble.com/cumulative-sum-by-group-and-under-some-criteria-tp4657074p4657773.html >>> >>>> To unsubscribe from cumulative sum by group and under some criteria, >>> click >>> >>>> here< >>> >>> >>> >>> >>>> . >>> >>>> NAML< >>> http://r.789695.n4.nabble.com/template/NamlServlet.jtp?macro=macro_viewer&id=instant_html%21nabble%3Aemail.naml&base=nabble.naml.namespaces.BasicNamespace-nabble.view.web.template.NabbleNamespace-nabble.view.web.template.NodeNamespace&breadcrumbs=notify_subscribers%21nabble%3Aemail.naml-instant_emails%21nabble%3Aemail.naml-send_instant_email%21nabble%3Aemail.naml> >>> >>> >>>> >>> >>> >>> >>> >>> >>> >>> >>> >>> >>>-- >>> >>>View this message in context: >>> http://r.789695.n4.nabble.com/cumulative-sum-by-group-and-under-some-criteria-tp4657074p4658133.html >>> >>> >>> >>>Sent from the R help mailing list archive at Nabble.com. >>> >>> [[alternative HTML version deleted]] >>> >>> >>> >>>______________________________________________ >>> >>>[hidden email] >>> >>><http://user/SendEmail.jtp?type=node&node=4659514&i=11>mailing list >> >>> >>> >>> >>>https://stat.ethz.ch/mailman/listinfo/r-help >>> >>>PLEASE do read the posting guide >>> http://www.R-project.org/posting-guide.html<http://www.r-project.org/posting-guide.html> >>> >>>and provide commented, minimal, self-contained, reproducible code. >>> >>> >>> >>> >>> >> >>> > >>> >>> ______________________________________________ >>> [hidden email] >>> <http://user/SendEmail.jtp?type=node&node=4659514&i=12>mailing list >> >>> https://stat.ethz.ch/mailman/listinfo/r-help >>> PLEASE do read the posting guide >>> http://www.R-project.org/posting-guide.html<http://www.r-project.org/posting-guide.html> >>> and provide commented, minimal, self-contained, reproducible code. >>> >>> >>> ------------------------------ >>> If you reply to this email, your message will be added to the discussion >>> below: >>> >> >>> http://r.789695.n4.nabble.com/cumulative-sum-by-group-and-under-some-criteria-tp4657074p4659514.html >>> To unsubscribe from cumulative sum by group and under some criteria, click >>> here<http://r.789695.n4.nabble.com/template/NamlServlet.jtp?macro=unsubscribe_by_code&node=4657074&code=WmpvYW5uYTIwMTNAZ21haWwuY29tfDQ2NTcwNzR8LTE3NTE1MDA0MzY=> >> >>> . >>> NAML<http://r.789695.n4.nabble.com/template/NamlServlet.jtp?macro=macro_viewer&id=instant_html%21nabble%3Aemail.naml&base=nabble.naml.namespaces.BasicNamespace-nabble.view.web.template.NabbleNamespace-nabble.view.web.template.NodeNamespace&breadcrumbs=notify_subscribers%21nabble%3Aemail.naml-instant_emails%21nabble%3Aemail.naml-send_instant_email%21nabble%3Aemail.naml> >>> >> >> >> >> >>-- >>View this message in context: >>http://r.789695.n4.nabble.com/cumulative-sum-by-group-and-under-some-criteria-tp4657074p4659717.html >> >>Sent from the R help mailing list archive at Nabble.com. >> [[alternative HTML version deleted]] >> >>______________________________________________ >>R-help@r-project.org mailing list >> >>https://stat.ethz.ch/mailman/listinfo/r-help >>PLEASE do read the posting guide http://www.R-project.org/posting-guide.html >>and provide commented, minimal, self-contained, reproducible code. >> >> > > > ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.