Hi I do want percentages of the categories inthe whole data set. But, I am a bit unclear about this syntax. Can you explain please. This is the error message I got with your script?
Error: could not find function "Copy.of.BP_2". Not sure what, because the data frame was already loaded. Also I was trying out package: vmv( after installing) as data(df,package, package="vmv") In data(Copy.of.BP_2c, package = "vmv") : data set Copy.of.BP_2c not found tablemissing(df, sort by="variable") Error in tablemissing(Copy.of.BP_2, sortby = "Sex") : object 'tabfinal' not found ## Same problem with "vim" package. ## What mistake could I have done? Thanks. On Sat, Jan 12, 2013 at 3:11 PM, arun <smartpink...@yahoo.com> wrote: > HI, > > If you want to find out the percentage of missing values in the whole > dataset in females and males: > set.seed(51) > > > dat1<-data.frame(Gender=rep(c("M","F"),each=10),V1=sample(c(1:3,NA),20,replace=TRUE),V2=sample(c(21:24,NA),20,replace=TRUE)) > unlist(lapply(lapply(split(dat1,dat1$Gender),function(x) > (nrow(x[!complete.cases(x[,-1]),])/nrow(x))*100),function(x) > paste(x,"%",sep=""))) > # F M > #"20%" "70%" > > #If it is to find the percentage of missing values for each variable in > females and males: > res<-do.call(rbind,lapply(split(dat1,dat1$Gender),function(x) > paste((colSums(is.na(x[,-1]))/nrow(x))*100,"%",sep=""))) > colnames(res)<-colnames(dat1)[-1] > res > # V1 V2 > #F "0%" "20%" > #M "50%" "20%" > A.K. > > > > > > ----- Original Message ----- > From: rex2013 <usha.nat...@gmail.com> > To: r-help@r-project.org > Cc: > Sent: Friday, January 11, 2013 2:16 AM > Subject: Re: [R] random effects model > > Hi AK > > Regarding the missing values, I would like to find out the patterns of > missing values in my data set. I know the overall values for each variable. > > using > > colSums(is.na(df)) > > but what I wanted is to find out the percentages > with each level of the variable with my dataset, as in if there is more > missing data in females or males etc?. > > I installed "mi" package, but unable to produce a plot with it( i would > also like to produce a plot). I searched the responses in the relevant > sections in r but could n't find an answer. > > Thanks, > > > > > > On Wed, Jan 9, 2013 at 12:31 PM, arun kirshna [via R] < > ml-node+s789695n465499...@n4.nabble.com> wrote: > > > HI, > > > > In your dataset, the "exchangeable" or "compound symmetry" may work as > > there are only two levels for time. In experimental data analysis > > involving a factor time with more than 2 levels, randomization of > > combination of levels of factors applied to the subject/plot etc. gets > > affected as time is unidirectional. I guess your data is observational, > > and with two time levels, it may not hurt to use "CS" as option, though, > it > > would help if you check different options. > > > > In the link I sent previously, QIC was used. > > > http://stats.stackexchange.com/questions/577/is-there-any-reason-to-prefer-the-aic-or-bic-over-the-other > > > > I am not sure whether AIC/BIC is better than QIC or viceversa. > > > > You could sent email to the maintainer of geepack (Jun Yan <[hidden > email]<http://user/SendEmail.jtp?type=node&node=4654996&i=0>>). > > > > Regarding the reference links, > > You can check this link "www.jstatsoft.org/v15/i02/paper" . Other > > references are in the paper. > > " > > 4.3. Missing values (waves) > > In case of missing values, the GEE estimates are consistent if the values > > are missing com- > > pletely at random (Rubin 1976). The geeglm function assumes by default > > that observations > > are equally separated in time. Therefore, one has to inform the function > > about different sep- > > arations if there are missing values and other correlation structures > than > > the independence or > > exchangeable structures are used. The waves arguments takes an integer > > vector that indicates > > that two observations of the same cluster with the values of the vector > of > > k respectively l have > > a correlation of rkl ." > > > > Hope it helps. > > A.K. > > > > > > > > > > ----- Original Message ----- > > From: rex2013 <[hidden email]< > http://user/SendEmail.jtp?type=node&node=4654996&i=1>> > > > > To: [hidden email] <http://user/SendEmail.jtp?type=node&node=4654996&i=2 > > > > Cc: > > Sent: Tuesday, January 8, 2013 5:29 PM > > Subject: Re: [R] random effects model > > > > Hi > > > > Thanks a lot, the corstr "exchangeable"does work. Didn't strike to me > > for so long. Does the AIC value come out with the gee output? > > > > By reference, I meant reference to a easy-read paper or web address > > that can give me knowledge about implications of missing data. > > > > Ta. > > > > On 1/8/13, arun kirshna [via R] > > <[hidden email] <http://user/SendEmail.jtp?type=node&node=4654996&i=3>> > > wrote: > > > > > > > > > > > HI, > > > BP.stack5 is the one without missing values. > > > na.omit(....). Otherwise, I have to use the option na.action=.. in the > > > ?geese() statement > > > > > > You need to read about the correlation structures. IN unstructured > > option, > > > more number of parameters needs to be estimated, In repeated measures > > > design, when the underlying structure is not known, it would be better > > to > > > compare using different options (exchangeable is similar to compound > > > symmetry) and select the one which provide the least value for AIC or > > BIC. > > > Have a look at > > > > > > > > > http://stats.stackexchange.com/questions/21771/how-to-perform-model-selection-in-gee-in-r > > > It's not clear to me "reference to write about missing values". > > > A.K. > > > > > > > > > > > > > > > ----- Original Message ----- > > > From: Usha Gurunathan <[hidden email]< > http://user/SendEmail.jtp?type=node&node=4654996&i=4>> > > > > > To: arun <[hidden email]< > http://user/SendEmail.jtp?type=node&node=4654996&i=5>> > > > > > Cc: > > > Sent: Monday, January 7, 2013 6:12 PM > > > Subject: Re: [R] random effects model > > > > > > Hi AK > > > > > > 2)I shall try putting exch. and check when I get home. Btw, what is > > > BP.stack5? is it with missing values or only complete cases? > > > > > > I guess I am still not clear about the unstructured and exchangeable > > > options, as in which one is better. > > > > > > 1)Rgding the summary(p): NA thing, I tried putting one of my gee > > equation. > > > > > > Can you suggest me a reference to write about" missing values and the > > > implications for my results" > > > > > > Thanks. > > > > > > > > > > > > On 1/8/13, arun <[hidden email]< > http://user/SendEmail.jtp?type=node&node=4654996&i=6>> > > wrote: > > >> HI, > > >> > > >> Just to add: > > >> > > > fit3<-geese(hibp~MaternalAge*time,id=CODEA,data=BP.stack5,family=binomial,corstr="exch",scale.fix=TRUE) > > > > >> #works > > >> summary(fit3)$mean["p"] > > >> # p > > >> #(Intercept) 0.00000000 > > >> #MaternalAge4 0.49099242 > > >> #MaternalAge5 0.04686295 > > >> #time21 0.86164351 > > >> #MaternalAge4:time21 0.59258221 > > >> #MaternalAge5:time21 0.79909832 > > >> > > >> > > > fit4<-geese(hibp~MaternalAge*time,id=CODEA,data=BP.stack5,family=binomial,corstr="unstructured",scale.fix=TRUE) > > > > >> #when the correlation structure is changed to "unstructured" > > >> #Error in `contrasts<-`(`*tmp*`, value = contr.funs[1 + isOF[nn]]) : > > >> # contrasts can be applied only to factors with 2 or more levels > > >> #In addition: Warning message: > > >> #In is.na(rows) : is.na() applied to non-(list or vector) of type > > 'NULL' > > >> > > >> > > >> Though, it works with data(Ohio) > > >> > > >> > > > fit1<-geese(resp~age+smoke+age:smoke,id=id,data=ohio1,family=binomial,corstr="unstructured",scale.fix=TRUE) > > > > >> summary(fit1)$mean["p"] > > >> # p > > >> #(Intercept) 0.00000000 > > >> #age-1 0.60555454 > > >> #age0 0.45322698 > > >> #age1 0.01187725 > > >> #smoke1 0.86262269 > > >> #age-1:smoke1 0.17239050 > > >> #age0:smoke1 0.32223942 > > >> #age1:smoke1 0.36686706 > > >> > > >> > > >> > > >> By checking: > > >> with(BP.stack5,table(MaternalAge,time)) > > >> # time > > >> #MaternalAge 14 21 > > >> # 3 1104 864 > > >> # 4 875 667 > > >> # 5 67 53 #less number of observations > > >> > > >> > > >> BP.stack6 <- BP.stack5[order(BP.stack5$CODEA, BP.stack5$time),] > > >> head(BP.stack6) # very few IDs with MaternalAge==5 > > >> # X CODEA Sex MaternalAge Education Birthplace AggScore IntScore > > >> #1493 3.1 3 2 3 3 1 0 0 > > >> #3202 3.2 3 2 3 3 1 0 0 > > >> #1306 7.1 7 2 4 6 1 0 0 > > >> #3064 7.2 7 2 4 6 1 0 0 > > >> #1 8.1 8 2 4 4 1 0 0 > > >> #2047 8.2 8 2 4 4 1 0 0 > > >> # Categ time Obese Overweight hibp > > >> #1493 Overweight 14 0 0 0 > > >> #3202 Overweight 21 0 1 0 > > >> #1306 Obese 14 0 0 0 > > >> #3064 Obese 21 1 1 0 > > >> #1 Normal 14 0 0 0 > > >> #2047 Normal 21 0 0 0 > > >> BP.stack7<-BP.stack6[BP.stack6$MaternalAge!=5,] > > >> > > >> > > > BP.stack7$MaternalAge<-factor(as.numeric(as.character(BP.stack7$MaternalAge) > > > > >> > > >> > > > fit5<-geese(hibp~MaternalAge*time,id=CODEA,data=BP.stack7,family=binomial,corstr="unstructured",scale.fix=TRUE) > > > > >> #Error in `contrasts<-`(`*tmp*`, value = contr.funs[1 + isOF[nn]]) : > > >> # contrasts can be applied only to factors with 2 or more levels > > >> > > >> with(BP.stack7,table(MaternalAge,time)) #It looks like the > > combinations > > >> are still there > > >> # time > > >> #MaternalAge 14 21 > > >> # 3 1104 864 > > >> # 4 875 667 > > >> > > >> It works also with corstr="ar1". Why do you gave the option > > >> "unstructured"? > > >> A.K. > > >> > > >> > > >> > > >> > > >> > > >> > > >> ----- Original Message ----- > > >> From: rex2013 <[hidden email]< > http://user/SendEmail.jtp?type=node&node=4654996&i=7>> > > > > >> To: [hidden email]< > http://user/SendEmail.jtp?type=node&node=4654996&i=8> > > >> Cc: > > >> Sent: Monday, January 7, 2013 6:15 AM > > >> Subject: Re: [R] random effects model > > >> > > >> Hi A.K > > >> > > >> Below is the comment I get, not sure why. > > >> > > >> BP.sub3 is the stacked data without the missing values. > > >> > > >> BP.geese3 <- geese(HiBP~time*MaternalAge,data=BP.sub3,id=CODEA, > > >> family=binomial, corstr="unstructured", na.action=na.omit)Error in > > >> `contrasts<-`(`*tmp*`, value = contr.funs[1 + isOF[nn]]) : > > >> contrasts can be applied only to factors with 2 or more levels > > >> > > >> Even though age has 3 levels; time has 14 years & 21 years; HIBP is a > > >> binary response outcome. > > >> > > >> 2) When you mentioned summary(m1)$mean["p"] what did the p mean? i > > >> used this in one of the gee command, it produced NA as answer? > > >> > > >> Many thanks > > >> > > >> > > >> > > >> On Mon, Jan 7, 2013 at 5:26 AM, arun kirshna [via R] < > > >> [hidden email] <http://user/SendEmail.jtp?type=node&node=4654996&i=9 > >> > > wrote: > > >> > > >>> Hi, > > >>> > > >>> I am not very familiar with the geese/geeglm(). Is it from > > >>> library(geepack)? > > >>> Regarding your question: > > >>> " > > >>> Can you tell me if I can use the geese or geeglm function with this > > data > > >>> eg: : HIBP~ time* Age > > >>> Here age is a factor with 3 levels, time: 2 levels, HIBP = yes/no. > > >>> > > >>> From your original data: > > >>> BP_2b<-read.csv("BP_2b.csv",sep="\t") > > >>> head(BP_2b,2) > > >>> # CODEA Sex MaternalAge Education Birthplace AggScore IntScore > > Obese14 > > >>> #1 1 NA 3 4 1 NA NA > > NA > > >>> #2 3 2 3 3 1 0 0 > > 0 > > >>> # Overweight14 Overweight21 Obese21 hibp14 hibp21 > > >>> #1 NA NA NA NA NA > > >>> #2 0 1 0 0 0 > > >>> > > >>> If I understand your new classification: > > >>> BP.stacknormal<- subset(BP_2b,Obese14==0 & Overweight14==0 & > > Obese21==0 > > >>> & > > >>> Overweight21==0) > > >>> BP.stackObese <- subset(BP_2b,(Obese14==1& Overweight14==0 & > > >>> Obese14==1&Overweight14==1)|(Obese14==1&Overweight14==1 & Obese21==1 > & > > >>> Overweight21==0)|(Obese14==1&Overweight14==0 & Obese21==0 & > > >>> Overweight21==0)|(Obese14==0 & Overweight14==0 & Obese21==1 & > > >>> Overweight21==0)|(Obese14==0 & Overweight14==0 & Obese21==1 & > > >>> Overweight21==1)|(Obese14==0 & Overweight14==1 & Obese21==1 > > >>> &Overweight21==1)|(Obese14==1& Overweight14==1 & Obese21==1& > > >>> Overweight21==1)) #check whether there are more classification that > > fits > > >>> to > > >>> #Obese > > >>> BP.stackOverweight <- subset(BP_2b,(Obese14==0 & Overweight14==1 & > > >>> Obese21==0 & Overweight21==1)|(Obese14==0 &Overweight14==1 & > > Obese21==0 > > >>> & > > >>> Overweight21==0)|(Obese14==0 & Overweight14==0 & Obese21==0 & > > >>> Overweight21==1)) > > >>> BP.stacknormal$Categ<-"Normal" > > >>> BP.stackObese$Categ<-"Obese" > > >>> BP.stackOverweight$Categ <- "Overweight" > > >>> > > >>> > > > BP.newObeseOverweightNormal<-na.omit(rbind(BP.stacknormal,BP.stackObese,BP.stackOverweight)) > > > > >>> > > >>> nrow(BP.newObeseOverweightNormal) > > >>> #[1] 1581 > > >>> BP.stack3 <- > > >>> > > > reshape(BP.newObeseOverweightNormal,idvar="CODEA",timevar="time",sep="_",varying=list(c("Obese14","Obese21"),c("Overweight14","Overweight21"),c("hibp14","hibp21")),v.names=c("Obese","Overweight","hibp"),direction="long") > > > > >>> > > >>> library(car) > > >>> BP.stack3$time<-recode(BP.stack3$time,"1=14;2=21") > > >>> head(BP.stack3,2) > > >>> # CODEA Sex MaternalAge Education Birthplace AggScore IntScore > > Categ > > >>> time > > >>> #8.1 8 2 4 4 1 0 0 > > Normal > > >>> 14 > > >>> #9.1 9 1 3 6 2 0 0 > > Normal > > >>> 14 > > >>> # Obese Overweight hibp > > >>> #8.1 0 0 0 > > >>> > > >>> Now, your formula: (HIBP~time*Age), is it MaternalAge? > > >>> If it is, it has three values > > >>> unique(BP.stack3$MaternalAge) > > >>> #[1] 4 3 5 > > >>> and for time (14,21) # If it says that geese/geeglm, contrasts could > > be > > >>> applied with factors>=2 levels, what is the problem? > > >>> If you take "Categ" variable, it also has 3 levels (Normal, Obese, > > >>> Overweight). > > >>> > > >>> BP.stack3$MaternalAge<-factor(BP.stack3$MaternalAge) > > >>> BP.stack3$time<-factor(BP.stack3$time) > > >>> > > >>> library(geepack) > > >>> For your last question about how to get the p-values: > > >>> # Using one of the example datasets: > > >>> data(seizure) > > >>> seiz.l <- reshape(seizure, > > >>> varying=list(c("base","y1", "y2", "y3", > "y4")), > > >>> v.names="y", times=0:4, direction="long") > > >>> seiz.l <- seiz.l[order(seiz.l$id, seiz.l$time),] > > >>> seiz.l$t <- ifelse(seiz.l$time == 0, 8, 2) > > >>> seiz.l$x <- ifelse(seiz.l$time == 0, 0, 1) > > >>> m1 <- geese(y ~ offset(log(t)) + x + trt + x:trt, id = id, > > >>> data=seiz.l, corstr="exch", family=poisson) > > >>> summary(m1) > > >>> > > >>> summary(m1)$mean["p"] > > >>> # p > > >>> #(Intercept) 0.0000000 > > >>> #x 0.3347040 > > >>> #trt 0.9011982 > > >>> #x:trt 0.6236769 > > >>> > > >>> > > >>> #If you need the p-values of the scale > > >>> summary(m1)$scale["p"] > > >>> # p > > >>> #(Intercept) 0.0254634 > > >>> > > >>> Hope it helps. > > >>> > > >>> A.K. > > >>> > > >>> > > >>> > > >>> > > >>> > > >>> > > >>> ----- Original Message ----- > > >>> From: rex2013 <[hidden > > >>> email]<http://user/SendEmail.jtp?type=node&node=4654795&i=0>> > > >>> > > >>> To: [hidden email] > > >>> <http://user/SendEmail.jtp?type=node&node=4654795&i=1> > > >>> Cc: > > >>> Sent: Sunday, January 6, 2013 4:55 AM > > >>> Subject: Re: [R] random effects model > > >>> > > >>> Hi A.K > > >>> > > >>> Regarding my question on comparing normal/ obese/overweight with > blood > > >>> pressure change, I did finally as per the first suggestion of > stacking > > >>> the > > >>> data and creating a normal category . This only gives me a obese not > > >>> obese > > >>> 14, but when I did with the wide format hoping to get a > > >>> obese14,normal14,overweight 14 Vs hibp 21, i could not complete any > of > > >>> the > > >>> models. > > >>> This time I classified obese=1 & overweight=1 as obese itself. > > >>> > > >>> Can you tell me if I can use the geese or geeglm function with this > > data > > >>> eg: : HIBP~ time* Age > > >>> Here age is a factor with 3 levels, time: 2 levels, HIBP = yes/no. > > >>> > > >>> It says geese/geeglm: contrast can be applied only with factor with 2 > > or > > >>> more levels. What is the way to overcome this. Can I manipulate the > > data > > >>> to > > >>> make it work. > > >>> > > >>> I need to know if the demogrphic variables affect change in blood > > >>> pressure > > >>> status over time? > > >>> > > >>> How to get the p values with gee model? > > >>> > > >>> Thanks > > >>> On Thu, Jan 3, 2013 at 5:06 AM, arun kirshna [via R] < > > >>> [hidden email] <http://user/SendEmail.jtp?type=node&node=4654795&i=2 > >> > > > > >>> wrote: > > >>> > > >>> > HI Rex, > > >>> > If I take a small subset from your whole dataset, and go through > > your > > >>> > codes: > > >>> > BP_2b<-read.csv("BP_2b.csv",sep="\t") > > >>> > BP.sub<-BP_2b[410:418,c(1,8:11,13)] #deleted the columns that are > > not > > >>> > needed > > >>> > BP.stacknormal<- subset(BP.subnew,Obese14==0 & Overweight14==0) > > >>> > BP.stackObese <- subset(BP.subnew,Obese14==1) > > >>> > BP.stackOverweight <- subset(BP.subnew,Overweight14==1) > > >>> > BP.stacknormal$Categ<-"Normal14" > > >>> > BP.stackObese$Categ<-"Obese14" > > >>> > BP.stackOverweight$Categ <- "Overweight14" > > >>> > > > >>> > > > BP.newObeseOverweightNormal<-rbind(BP.stacknormal,BP.stackObese,BP.stackOverweight) > > > > >>> > > >>> > > > >>> > BP.newObeseOverweightNormal > > >>> > # CODEA Obese14 Overweight14 Overweight21 Obese21 hibp21 > > >>> > Categ > > >>> > #411 541 0 0 0 0 0 > > >>> > Normal14 > > >>> > #415 545 0 0 1 1 1 > > >>> > Normal14 > > >>> > #418 549 0 0 1 0 0 > > >>> > Normal14 > > >>> > #413 543 1 0 1 1 0 > > >>> > Obese14 > > >>> > #417 548 0 1 1 0 0 > > >>> > Overweight14 > > >>> > BP.newObeseOverweightNormal$Categ<- > > >>> > factor(BP.newObeseOverweightNormal$Categ) > > >>> > BP.stack3 <- > > >>> > > > >>> > > > reshape(BP.newObeseOverweightNormal,idvar="CODEA",timevar="time",sep="_",varying=list(c("Obese14","Obese21"),c("Overweight14","Overweight21")),v.names=c("Obese","Overweight"),direction="long") > > > > >>> > > >>> > > > >>> > library(car) > > >>> > BP.stack3$time<-recode(BP.stack3$time,"1=14;2=21") > > >>> > BP.stack3 #Here Normal14 gets repeated even at time==21. Given > that > > >>> > you > > >>> > are using the "Categ" and "time" #columns in the analysis, it will > > >>> > give > > >>> > incorrect results. > > >>> > # CODEA hibp21 Categ time Obese Overweight > > >>> > #541.1 541 0 Normal14 14 0 0 > > >>> > #545.1 545 1 Normal14 14 0 0 > > >>> > #549.1 549 0 Normal14 14 0 0 > > >>> > #543.1 543 0 Obese14 14 1 0 > > >>> > #548.1 548 0 Overweight14 14 0 1 > > >>> > #541.2 541 0 Normal14 21 0 0 > > >>> > #545.2 545 1 Normal14 21 1 1 > > >>> > #549.2 549 0 Normal14 21 0 1 > > >>> > #543.2 543 0 Obese14 21 1 1 > > >>> > #548.2 548 0 Overweight14 21 0 1 > > >>> > #Even if I correct the above codes, this will give incorrect > > >>> > results/(error as you shown) because the response variable (hibp21) > > >>> > gets > > >>> > #repeated when you reshape it from wide to long. > > >>> > > > >>> > The correct classification might be: > > >>> > BP_2b<-read.csv("BP_2b.csv",sep="\t") > > >>> > BP.sub<-BP_2b[410:418,c(1,8:11,13)] > > >>> > > > >>> > > > BP.subnew<-reshape(BP.sub,idvar="CODEA",timevar="time",sep="",varying=list(c("Obese14","Obese21"),c("Overweight14","Overweight21")),v.names=c("Obese","Overweight"),direction="long") > > > > >>> > > >>> > > > >>> > BP.subnew$time<-recode(BP.subnew$time,"1=14;2=21") > > >>> > BP.subnew<-na.omit(BP.subnew) > > >>> > > > >>> > BP.subnew$Categ[BP.subnew$Overweight==1 & BP.subnew$time==14 & > > >>> > BP.subnew$Obese==0]<-"Overweight14" > > >>> > BP.subnew$Categ[BP.subnew$Overweight==1 & BP.subnew$time==21 & > > >>> > BP.subnew$Obese==0]<-"Overweight21" > > >>> > BP.subnew$Categ[BP.subnew$Obese==1 & BP.subnew$time==14 & > > >>> > BP.subnew$Overweight==0]<-"Obese14" > > >>> > BP.subnew$Categ[BP.subnew$Obese==1 & BP.subnew$time==21 & > > >>> > BP.subnew$Overweight==0]<-"Obese21" > > >>> > BP.subnew$Categ[BP.subnew$Overweight==1 & BP.subnew$time==21& > > >>> > BP.subnew$Obese==1]<-"ObeseOverweight21" > > >>> > BP.subnew$Categ[BP.subnew$Overweight==1 & BP.subnew$time==14& > > >>> > BP.subnew$Obese==1]<-"ObeseOverweight14" > > >>> > BP.subnew$Categ[BP.subnew$Overweight==0 & BP.subnew$Obese==0 > > >>> > &BP.subnew$time==14]<-"Normal14" > > >>> > BP.subnew$Categ[BP.subnew$Overweight==0 & BP.subnew$Obese==0 > > >>> > &BP.subnew$time==21]<-"Normal21" > > >>> > > > >>> > BP.subnew$Categ<-factor(BP.subnew$Categ) > > >>> > BP.subnew$time<-factor(BP.subnew$time) > > >>> > BP.subnew > > >>> > # CODEA hibp21 time Obese Overweight Categ > > >>> > #541.1 541 0 14 0 0 Normal14 > > >>> > #543.1 543 0 14 1 0 Obese14 > > >>> > #545.1 545 1 14 0 0 Normal14 > > >>> > #548.1 548 0 14 0 1 Overweight14 > > >>> > #549.1 549 0 14 0 0 Normal14 > > >>> > #541.2 541 0 21 0 0 Normal21 > > >>> > #543.2 543 0 21 1 1 ObeseOverweight21 > > >>> > #545.2 545 1 21 1 1 ObeseOverweight21 > > >>> > #548.2 548 0 21 0 1 Overweight21 > > >>> > #549.2 549 0 21 0 1 Overweight21 > > >>> > > > >>> > #NOw with the whole dataset: > > >>> > BP.sub<-BP_2b[,c(1,8:11,13)] #change here and paste the above > lines: > > >>> > head(BP.subnew) > > >>> > # CODEA hibp21 time Obese Overweight Categ > > >>> > #3.1 3 0 14 0 0 Normal14 > > >>> > #7.1 7 0 14 0 0 Normal14 > > >>> > #8.1 8 0 14 0 0 Normal14 > > >>> > #9.1 9 0 14 0 0 Normal14 > > >>> > #14.1 14 1 14 0 0 Normal14 > > >>> > #21.1 21 0 14 0 0 Normal14 > > >>> > > > >>> > tail(BP.subnew) > > >>> > # CODEA hibp21 time Obese Overweight Categ > > >>> > #8485.2 8485 0 21 1 1 ObeseOverweight21 > > >>> > #8506.2 8506 0 21 0 1 Overweight21 > > >>> > #8520.2 8520 0 21 0 0 Normal21 > > >>> > #8529.2 8529 1 21 1 1 ObeseOverweight21 > > >>> > #8550.2 8550 0 21 1 1 ObeseOverweight21 > > >>> > #8554.2 8554 0 21 0 0 Normal21 > > >>> > > > >>> > summary(lme.1 <- lme(hibp21~time+Categ+ time*Categ, > > >>> > data=BP.subnew,random=~1|CODEA, na.action=na.omit)) > > >>> > #Error in MEEM(object, conLin, control$niterEM) : > > >>> > #Singularity in backsolve at level 0, block 1 > > >>> > #May be because of the reasons I mentioned above. > > >>> > > > >>> > #YOu didn't mention the library(gee) > > >>> > BP.gee8 <- gee(hibp21~time+Categ+time*Categ, > > >>> > data=BP.subnew,id=CODEA,family=binomial, > > >>> > corstr="exchangeable",na.action=na.omit) > > >>> > #Beginning Cgee S-function, @(#) geeformula.q 4.13 98/01/27 > > >>> > #Error in gee(hibp21 ~ time + Categ + time * Categ, data = > > BP.subnew, > > >>> > id > > >>> = > > >>> > CODEA, : > > >>> > #rank-deficient model matrix > > >>> > With your codes, it might have worked, but the results may be > > >>> > inaccurate > > >>> > # After running your whole codes: > > >>> > BP.gee8 <- gee(hibp21~time+Categ+time*Categ, > > >>> > data=BP.stack3,id=CODEA,family=binomial, > > >>> > corstr="exchangeable",na.action=na.omit) > > >>> > #Beginning Cgee S-function, @(#) geeformula.q 4.13 98/01/27 > > >>> > #running glm to get initial regression estimate > > >>> > # (Intercept) time > > CategObese14 > > >>> > # -2.456607e+01 9.940875e-15 > > 2.087584e-13 > > >>> > # CategOverweight14 time:CategObese14 > > time:CategOverweight14 > > >>> > # 2.087584e-13 -9.940875e-15 > > -9.940875e-15 > > >>> > #Error in gee(hibp21 ~ time + Categ + time * Categ, data = > > BP.stack3, > > >>> > id > > >>> = > > >>> > CODEA, : > > >>> > # Cgee: error: logistic model for probability has fitted value > very > > >>> close > > >>> > to 1. > > >>> > #estimates diverging; iteration terminated. > > >>> > > > >>> > In short, I think it would be better to go with the suggestion in > my > > >>> > previous email with adequate changes in "Categ" variable (adding > > >>> > ObeseOverweight14, ObeseOverweight21 etc) as I showed here. > > >>> > > > >>> > A.K. > > >>> > > > >>> > > > >>> > > > >>> > > > >>> > > > >>> > > > >>> > > > >>> > > > >>> > ------------------------------ > > >>> > If you reply to this email, your message will be added to the > > >>> discussion > > >>> > below: > > >>> > > > >>> > > >>> > . > > >>> > NAML< > > >>> > > > http://r.789695.n4.nabble.com/template/NamlServlet.jtp?macro=macro_viewer&id=instant_html%21nabble%3Aemail.naml&base=nabble.naml.namespaces.BasicNamespace-nabble.view.web.template.NabbleNamespace-nabble.view.web.template.NodeNamespace&breadcrumbs=notify_subscribers%21nabble%3Aemail.naml-instant_emails%21nabble%3Aemail.naml-send_instant_email%21nabble%3Aemail.naml > > > > > > >>> > > >>> > > > >>> > > >>> > > >>> > > >>> > > >>> -- > > >>> View this message in context: > > >>> > > > http://r.789695.n4.nabble.com/random-effects-model-tp4654346p4654776.html > > >>> Sent from the R help mailing list archive at Nabble.com. > > >>> [[alternative HTML version deleted]] > > >>> > > >>> ______________________________________________ > > >>> [hidden email] > > >>> <http://user/SendEmail.jtp?type=node&node=4654795&i=3>mailing list > > >>> https://stat.ethz.ch/mailman/listinfo/r-help > > >>> PLEASE do read the posting guide > > >>> http://www.R-project.org/posting-guide.html > > >>> and provide commented, minimal, self-contained, reproducible code. > > >>> > > >>> > > >>> ______________________________________________ > > >>> [hidden email] > > >>> <http://user/SendEmail.jtp?type=node&node=4654795&i=4>mailing list > > >>> https://stat.ethz.ch/mailman/listinfo/r-help > > >>> PLEASE do read the posting guide > > >>> http://www.R-project.org/posting-guide.html > > >>> and provide commented, minimal, self-contained, reproducible code. > > >>> > > >>> > > >>> ------------------------------ > > >>> If you reply to this email, your message will be added to the > > >>> discussion > > >>> below: > > >>> > > > http://r.789695.n4.nabble.com/random-effects-model-tp4654346p4654795.html > > >>> To unsubscribe from random effects model, click > > >>> here< > > > > >>> . > > >>> NAML< > > > http://r.789695.n4.nabble.com/template/NamlServlet.jtp?macro=macro_viewer&id=instant_html%21nabble%3Aemail.naml&base=nabble.naml.namespaces.BasicNamespace-nabble.view.web.template.NabbleNamespace-nabble.view.web.template.NodeNamespace&breadcrumbs=notify_subscribers%21nabble%3Aemail.naml-instant_emails%21nabble%3Aemail.naml-send_instant_email%21nabble%3Aemail.naml > > > > > > >>> > > >> > > >> > > >> > > >> > > >> -- > > >> View this message in context: > > >> > > > http://r.789695.n4.nabble.com/random-effects-model-tp4654346p4654826.html > > >> Sent from the R help mailing list archive at Nabble.com. > > >> [[alternative HTML version deleted]] > > >> > > >> ______________________________________________ > > >> [hidden email] > > >> <http://user/SendEmail.jtp?type=node&node=4654996&i=10>mailing > list > > >> https://stat.ethz.ch/mailman/listinfo/r-help > > >> PLEASE do read the posting guide > > >> http://www.R-project.org/posting-guide.html > > >> and provide commented, minimal, self-contained, reproducible code. > > >> > > >> > > > > > > > > > ______________________________________________ > > > [hidden email] > > > <http://user/SendEmail.jtp?type=node&node=4654996&i=11>mailing > list > > > https://stat.ethz.ch/mailman/listinfo/r-help > > > PLEASE do read the posting guide > > > http://www.R-project.org/posting-guide.html > > > and provide commented, minimal, self-contained, reproducible code. > > > > > > > > > > > > > > > _______________________________________________ > > > If you reply to this email, your message will be added to the > discussion > > > below: > > > > > > http://r.789695.n4.nabble.com/random-effects-model-tp4654346p4654902.html > > > > > > To unsubscribe from random effects model, visit > > > > > > > View this message in context: > > > http://r.789695.n4.nabble.com/random-effects-model-tp4654346p4654986.html > > > > Sent from the R help mailing list archive at Nabble.com. > > [[alternative HTML version deleted]] > > > > ______________________________________________ > > [hidden email] > > <http://user/SendEmail.jtp?type=node&node=4654996&i=12>mailing > list > > https://stat.ethz.ch/mailman/listinfo/r-help > > PLEASE do read the posting guide > > http://www.R-project.org/posting-guide.html > > and provide commented, minimal, self-contained, reproducible code. > > > > > > ______________________________________________ > > [hidden email] > > <http://user/SendEmail.jtp?type=node&node=4654996&i=13>mailing > list > > https://stat.ethz.ch/mailman/listinfo/r-help > > PLEASE do read the posting guide > > http://www.R-project.org/posting-guide.html > > and provide commented, minimal, self-contained, reproducible code. > > > > > > ------------------------------ > > If you reply to this email, your message will be added to the discussion > > below: > > > http://r.789695.n4.nabble.com/random-effects-model-tp4654346p4654996.html > > To unsubscribe from random effects model, click here< > http://r.789695.n4.nabble.com/template/NamlServlet.jtp?macro=unsubscribe_by_code&node=4654346&code=dXNoYS5uYXRoYW5AZ21haWwuY29tfDQ2NTQzNDZ8MjAyMjE1NDI0 > > > > . > > NAML< > http://r.789695.n4.nabble.com/template/NamlServlet.jtp?macro=macro_viewer&id=instant_html%21nabble%3Aemail.naml&base=nabble.naml.namespaces.BasicNamespace-nabble.view.web.template.NabbleNamespace-nabble.view.web.template.NodeNamespace&breadcrumbs=notify_subscribers%21nabble%3Aemail.naml-instant_emails%21nabble%3Aemail.naml-send_instant_email%21nabble%3Aemail.naml > > > > > > > > > -- > View this message in context: > http://r.789695.n4.nabble.com/random-effects-model-tp4654346p4655206.html > Sent from the R help mailing list archive at Nabble.com. > [[alternative HTML version deleted]] > > ______________________________________________ > R-help@r-project.org mailing list > https://stat.ethz.ch/mailman/listinfo/r-help > PLEASE do read the posting guide > http://www.R-project.org/posting-guide.html > and provide commented, minimal, self-contained, reproducible code. > > [[alternative HTML version deleted]]
______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.