Hello everyone, I have been spending many hours on a seemingly simple portfolio optimization problem using the package fPortfolio.
My optimization problem is slightly different than a standard one such that I have a known set of asset returns. My problem is how to collect this information into my functions and pass them onto the optimization function. I have written my own covariance estimation function using the "shrinkEstimator" as template. I will use the shrunk estimation of the covariance matrix with my own set of predicted returns. My code is below. Many thanks, Darius ----------------------------------------------------------------------- b=ts(ret.forecast[1,]) mu.pred=b myEstimator=function(x) { stopifnot(inherits(x, "timeSeries")) x.mat = x mu = mu.pred Sigma = .cov.shrink(x = x.mat, verbose = FALSE, ...) attr(Sigma, "lambda.var") <- NULL attr(Sigma, "lambda.var.estimated") <- NULL list(mu = mu, Sigma = Sigma) } portfolio1=portfolioSpec() a=ts(ret.mat[(1:60),(1:n.assets)]) setEstimator(portfolio1)="myEstimator" portfolio2=tangencyPortfolio(data=a, spec=portfolio1) [[alternative HTML version deleted]] ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.