Thanks for the answer. I have already read the gstat manual and I had 
constructed the empirical and theoretical variogram like this:
g <- gstat(id="tec", formula=TEC ~ 1, data=data)v <- 
variogram(g)mod<-vgm(sill=var(data$TEC),model="Sph",range=200,nugget=10)v.fit 
<- fit.variogram(v, 
model=mod,fit.method=1)Theor_variogram=plot(variogram(TEC~1,data),v.fit,main="WLS
 Model")plot(Theor_variogram)

But still, when I use predict:p <- predict.gstat(g, model=v.fit, 
newdata=predGrid)
..instead of ordinary kriging I get inverse distance weighted.Please, if anyone 
knows where I make the mistake or what I miss, please let me know!Thanks
 



> From: s.elli...@lgcgroup.com
> To: dimitriskarakost...@hotmail.com; r-help@r-project.org
> Date: Mon, 17 Dec 2012 17:22:12 +0000
> Subject: RE: [R] How to make Ordinary Kriging using gstat predict?
> 
> 
> > -----Original Message-----
> > My problem is that instead of Ordinary kriging, when I run 
> > the algorithm I get: Inverse distance weighted interpolation. 
> > Why is that? What am I missing or doing wrong? 
> The gstat manual at http://www.gstat.org/gstat.pdf says on p16 that  "When no 
> variograms are specified, inverse distance weighted interpolation
> is the default action (Fig. 2.1, example [6.3]).
> When variograms are specified the default prediction method is ordinary
> kriging Journel and Huijbregts (1978); Cressie (1993) (example [6.4] and
> example [6.8])."
> 
> It looks like reading that manual may be useful ...
> 
> S Ellison
> 
> *******************************************************************
> This email and any attachments are confidential. Any u...{{dropped:11}}

______________________________________________
R-help@r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.

Reply via email to