Hi,
You could also use ?colwise() from library(plyr)
set.seed(50)
dat1<-data.frame(Col1=sample(1:20,10,replace=TRUE),Col2=sample(LETTERS[1:10],10,replace=TRUE),Col3=sample(LETTERS[11:20],10,replace=TRUE),Col4=sample(40:60,10,replace=TRUE))
 dat1[unlist(colwise(is.factor)(dat1))]
#   Col2 Col3
#1     D    Q
#2     C    L
#3     G    R
#4     A    S
#5     C    N
#6     G    Q
#7     I    P
#8     D    M
#9     A    N
#10    B    N
 dat1[unlist(colwise(is.numeric)(dat1))]
A.K.




----- Original Message -----
From: Martin Spindler <martin.spind...@gmx.de>
To: R-help@r-project.org
Cc: 
Sent: Monday, December 17, 2012 5:02 AM
Subject: [R] Splitting up of a dataframe according to the type of variables

Dear R users,

I have a dataframe which consists of variables of type numeric and factor.
What is the easiest way to split up the dataframe to two dataframe which 
contain all variables of the type numeric resp. factors?

Thank you very much for your efforts in advance!

Best,

Martin

______________________________________________
R-help@r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.


______________________________________________
R-help@r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.

Reply via email to