You need to defined a svydesign object that contains all the variables you
want to use.  This object is passed as the design= argument to all the
analysis functions in the survey package.  The functions don't have a data=
argument, and many of them will not look outside the design= argument for
variables.

So if your data set is called 'data', and the weight variable is called
'peso', define the design object:

test <- svydesign(id=~1,weights=~peso, data=data)

Then use it in svyglm:

logit <- svyglm(bach ~ job2 + mujer + egp4 + programa + delay + mdeo +
str + evprivate, family=binomial,design=test)

or in svymean:

svymean(~mujer, design=test)


   -thomas




On Thu, Nov 29, 2012 at 6:20 AM, Pablo Menese <pmen...@gmail.com> wrote:

> Dear Milan... are you serious?
> Did you read this?
>
> I have this problem.
>
> test <- svydesign(id=~1,weights=~peso)
>
> logit <- svyglm(bach ~ job2 + mujer + egp4 + programa + delay + mdeo + str
> + evprivate, family=binomial,design=test)
>
> then appear:
>
> Error in svyglm.survey.design(bach ~ job2 + mujer + egp4 + programa +  :
>   all variables must be in design= argument
>
> I don't know what this mean...
> Please help.
>
> Quotes from a week ago...
> I colud not perform anything using svyglm... I wish... but... I don't know
> why...
>
>
> On Tue, Nov 27, 2012 at 6:54 PM, Milan Bouchet-Valat <nalimi...@club.fr
> >wrote:
>
> > Le mardi 27 novembre 2012 à 18:33 -0300, Pablo Menese a écrit :
> > > I can't ... I don't know why but I can't
> > >
> > > When I use it:
> > >
> > > logit <- glm(bach ~ egp4 + programa, weight=wst7,
> > > family=quasibinomial(link"logit"))
> > You were advised to use svyglm(), not glm(). It's usually considered
> > polite to read carefully the anwsers you get to your questions...
> >
> >
> > Regards
> >
> > > I reach the same betas that in STATA, but the hypothesis test, the t
> > value,
> > > and the std. error is different.
> > >
> > > I think that the solution can't be so far from this...
> > >
> > >
> > > On Fri, Nov 23, 2012 at 9:49 PM, Anthony Damico <ajdam...@gmail.com>
> > wrote:
> > >
> > > > from your stata output, it looks like you need to use the survey
> > package
> > > > in R
> > > >
> > > > for step-by-step instructions about how to do this (and comparisons
> to
> > > > stata), see
> > > >
> > > >
> http://journal.r-project.org/archive/2009-2/RJournal_2009-2_Damico.pdf
> > > >
> > > > once you're ready to run the regression, use svyglm() instead of
> glm()
> > and
> > > > drop the weights argument (since it will already be part of the
> survey
> > > > design)   :)
> > > >
> > > >
> > > >
> > > > On Fri, Nov 23, 2012 at 3:13 PM, Pablo Menese <pmen...@gmail.com>
> > wrote:
> > > >
> > > >> Until a weeks ago I used stata for everything.
> > > >> Now I'm learning R and trying to move. But, in this stage I'm
> testing
> > R
> > > >> trying to do the same things than I used to do in stata whit the
> same
> > > >> outputs.
> > > >> I have a problem with the logit, applying weights.
> > > >>
> > > >> in stata I have this output
> > > >> . svy: logit bach job2 mujer i.egp4 programa delay mdeo i.str
> > evprivate
> > > >> (running logit on estimation sample)
> > > >>
> > > >> Survey: Logistic regression
> > > >>
> > > >> Number of strata   =         1                  Number of obs      =
> > > >> 248
> > > >> Number of PSUs     =       248                  Population size    =
> > > >> 5290.1639
> > > >> Design df          =       247
> > > >> F(  11,    237)    =      4.39
> > > >> Prob > F           =    0.0000
> > > >>
> > > >>
> > > >> Linearized
> > > >> bach       Coef.   Std. Err.      t    P>t     [95% Conf. Interval]
> > > >>
> > > >> job2   -.4437446   .4385934    -1.01   0.313    -1.307605
>  .4201154
> > > >> mujer    1.070595   .4169919     2.57   0.011     .2492812
>  1.891908
> > > >>
> > > >> egp4
> > > >> 2    -.4839342    .539808    -0.90   0.371    -1.547148    .5792796
> > > >> 3    -1.288947   .5347344    -2.41   0.017    -2.342168   -.2357263
> > > >> 4    -.8569793   .5106425    -1.68   0.095    -1.862748    .1487898
> > > >>
> > > >> programa    .9694352   .5677642     1.71   0.089    -.1488415
> >  2.087712
> > > >> delay   -1.552582   .5714967    -2.72   0.007    -2.678211
>  -.426954
> > > >> mdeo   -.7938904   .3727571    -2.13   0.034    -1.528078
> -.0597025
> > > >>
> > > >> str
> > > >> 2    -1.122691   .5731879    -1.96   0.051     -2.25165    .0062682
> > > >> 3    -2.056682   .6350485    -3.24   0.001    -3.307483   -.8058812
> > > >>
> > > >> evprivate   -1.962431   .5674143    -3.46   0.001    -3.080018
> > -.8448431
> > > >> _cons    2.308699   .7274924     3.17   0.002     .8758187
>  3.741578
> > > >>
> > > >>
> > > >> the best that i get in R was:
> > > >>
> > > >> glm(formula = bach ~ job2 + mujer + egp4 + programa + delay +
> > > >>     mdeo + str + evprivate, family = quasibinomial(link = "logit"),
> > > >>     weights = wst7)
> > > >>
> > > >> Deviance Residuals:
> > > >>      Min        1Q    Median        3Q       Max
> > > >> -12.5951   -3.9034   -0.9412    3.8268   11.2750
> > > >>
> > > >> Coefficients:
> > > >>                            Estimate Std. Error t value Pr(>|t|)
> > > >> (Intercept)                  2.3087     0.7173   3.218  0.00147 **
> > > >> job2                        -0.4437     0.4355  -1.019  0.30926
> > > >> mujer                        1.0706     0.3558   3.009  0.00290 **
> > > >> egp4intermediate (iii, iv)  -0.4839     0.4946  -0.978  0.32890
> > > >> egp4skilled manual workers  -1.2889     0.5268  -2.447  0.01514 *
> > > >> egp4working class           -0.8570     0.4625  -1.853  0.06514 .
> > > >> programa                     0.9694     0.4951   1.958  0.05141 .
> > > >> delay                       -1.5526     0.4878  -3.183  0.00166 **
> > > >> mdeo                        -0.7939     0.4207  -1.887  0.06037 .
> > > >> strest. ii                  -1.1227     0.4809  -2.334  0.02042 *
> > > >> strestr. iii                -2.0567     0.5134  -4.006 8.28e-05 ***
> > > >> evprivate                   -1.9624     0.6490  -3.024  0.00277 **
> > > >> ---
> > > >> Signif. codes:  0 *** 0.001 ** 0.01 * 0.05 . 0.1   1
> > > >>
> > > >> (Dispersion parameter for quasibinomial family taken to be 23.14436)
> > > >>
> > > >>     Null deviance: 7318.5  on 246  degrees of freedom
> > > >> Residual deviance: 5692.8  on 235  degrees of freedom
> > > >>   (103 observations deleted due to missingness)
> > > >> AIC: NA
> > > >>
> > > >> Number of Fisher Scoring iterations: 6
> > > >>
> > > >> Warning message:
> > > >> In summary.glm(logit) :
> > > >>   observations with zero weight not used for calculating dispersion
> > > >>
> > > >> this has the same betas but the hypothesis test has differents
> > values...
> > > >>
> > > >>
> > > >> HELP!!!!
> > > >>
> > > >>         [[alternative HTML version deleted]]
> > > >>
> > > >>
> > > >> ______________________________________________
> > > >> R-help@r-project.org mailing list
> > > >> https://stat.ethz.ch/mailman/listinfo/r-help
> > > >> PLEASE do read the posting guide
> > > >> http://www.R-project.org/posting-guide.html
> > > >> and provide commented, minimal, self-contained, reproducible code.
> > > >>
> > > >>
> > > >
> > >
> > >       [[alternative HTML version deleted]]
> > >
> > > ______________________________________________
> > > R-help@r-project.org mailing list
> > > https://stat.ethz.ch/mailman/listinfo/r-help
> > > PLEASE do read the posting guide
> > http://www.R-project.org/posting-guide.html
> > > and provide commented, minimal, self-contained, reproducible code.
> >
> >
>
>         [[alternative HTML version deleted]]
>
>
> ______________________________________________
> R-help@r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide
> http://www.R-project.org/posting-guide.html
> and provide commented, minimal, self-contained, reproducible code.
>
>


-- 
Thomas Lumley
Professor of Biostatistics
University of Auckland

        [[alternative HTML version deleted]]

______________________________________________
R-help@r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.

Reply via email to