Hi Jorge, That was great! Thank you very much for the suggestion.
I just had to make a couple of minor changes (e.g., pearson vs. spearman) and it worked perfectly. Thanks, Joao Pedro Hi, I'm sure it could be better but try this: # F statistics based on lm FSTAT=function(y,x) summary(lm(y~x))$f[1] # Correlation and p-value CORR=function(y,x){ tc=cor.test(x,y,method="spearman",alternative="two.sided") temp=matrix(c(tc$estimate,tc$p.value),ncol=2) colnames(temp)=c('rho','pvalue') temp } # 1000 variables and 100 samples set.seed(124) X=matrix(rnorm(1000*100),ncol=100) # Correlation coefficient, p-value and F statistics corr=t(apply(X[-1,],1,CORR,x=X[1,])) # Your reference is X[1,] fs=apply(X[-1,],1,FSTAT,x=X[1,]) # Your reference is X[1,] # Report temp=data.frame(fstats=fs,rho=corr[,1],pvalue=corr[,2]) rownames(temp)=paste("X",2:nrow(X),sep="") dim(temp) [1] 999 3 temp[1:10,] fstats rho pvalue X2 1.421307790 -0.05038104 0.61807912 X3 0.051423768 -0.04614461 0.64795111 X4 0.128000634 0.01795380 0.85902211 X5 0.990235820 -0.06540654 0.51730942 X6 5.569006085 0.24232823 0.01532172 X7 0.001862766 -0.01436544 0.88703532 X8 1.025363077 -0.10628263 0.29206908 X9 0.679794149 0.06509451 0.51927479 X10 1.296034903 0.09492949 0.34686211 X11 0.126636867 0.05137714 0.61110106 HTH, Jorge -- View this message in context: http://www.nabble.com/Obtaining-correlation-parameters-for-multiple-rows-tp16851980p16904683.html Sent from the R help mailing list archive at Nabble.com. ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.