On Tue, Oct 16, 2012 at 10:40 PM, Sebastian Weirich <sebastian.weir...@iqb.hu-berlin.de> wrote: > Hello, > > svyvar from the survey package computes variances (with standard errors) > from survey design objects. Is there any way to compute standard deviations > and their standard errors in a similar manner?
Usually you can do this sort of transformation with svycontrast(), but it doesn't work on the output of svyvar(). You need to use the delta method directly. #compute variances > vv<-svyvar(~api00+api99,dclus1) ## variance > coef(vv) api00 api99 api00 11182.82 11516.33 api99 11516.33 12735.21 ## variance of variance > vcov(vv) api00 api00 api99 api99 api00 1922144 1920707 1920707 1851400 api00 1920707 1996169 1996169 2004475 api99 1920707 1996169 1996169 2004475 api99 1851400 2004475 2004475 2102736 ## standard error is square root of variance > sqrt(diag(coef(vv))) api00 api99 105.7489 112.8504 ## delta method for standard error of square root of variance > sqrt(vcov(vv)["api00","api00"]/(4*coef(vv)["api00","api00"])) [1] 6.555219 -thomas -- Thomas Lumley Professor of Biostatistics University of Auckland ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.