Hi everyone, I'm trying to perform a bi exponential Fit with the package NLS. the plinear algorithm seems to be a good choice
see: p<-3000 q<-1000 a<--0.03 b<--0.02 t<-seq(0:144);t y<-p*exp(a*t) + q*exp(b*t)+rnorm(t,sd=0.3*(p* exp(a*t) + q*exp(b*t))) fittA <- nls(y~cbind(exp(a*t), exp(b*t)), algorithm="plinear",start=list(a=-.1, b=-0.2), data=list(y=y, t=t), trace=FALSE);fittA # a b .lin1 .lin2 # -0.003074 -2.777 4512 -2399 fittB <- nls(y~cbind(exp(a*t), exp(b*t)), algorithm="plinear",start=list(a=-.1, b=-0.3), data=list(y=y, t=t), trace=FALSE);fittB # a b .lin1 .lin2 # -0.02248 -0.04684 2414.86017 2052.96601 but 1 - the initial condition is very sensitive, is there any way to find a good start for the parameters? 2 - I would like to havre .lin1 >0 ans .lin2 >0 , is there a way to do that? thx a lot [[alternative HTML version deleted]] ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.