Hi, I'm trying to use gmm package in order to calculate linear regression (I need to use the gmm for other application and this is a prior test I'm doing).
I've defined a function for linear regression with 2 variables (x[,1] holds the y values, while x[,2:3] holds the x values): function(tet, x) { m1 <- (x[,1] - (tet[1] + tet[2] * x[,2] + tet[3] * x[,3])) * x[,2] m2 <- (x[,1] - (tet[1] + tet[2] * x[,2] + tet[3] * x[,3])) * x[,3] m3 <- (x[,1] - (tet[1] + tet[2] * x[,2] + tet[3] * x[,3])) * 1.0 f <-cbind(m1, m2, m3) return(f) } Then I run: gmm(g1, d, c(0,0,0)) * d - input data.frame and I get: Theta[1] Theta[2] Theta[3] 0.055635 0.025520 0.047638 However when I use: glm(y~x1 + x2, data =d) I get: Coefficients: (Intercept) x1 x2 -0.2833 0.0318 0.6612 When I tries to use the output from glm as initial values to the gmm I got the following results: Theta[1] Theta[2] Theta[3] -0.283349 0.031798 0.661225 In addition when I'm trying the coefficients from the glm run in g1 I get the minimum result (much smaller results relative to the gmm result). BTW, d is: y x1 x2 1 0 1 0.29944294 2 0 2 0.12521669 3 1 3 0.97254701 4 0 4 0.79952796 5 0 5 0.77358425 6 0 6 0.09983754 7 1 7 0.46133893 8 0 8 0.59833493 9 0 9 0.80005524 10 0 10 0.02979412 11 1 11 0.70576655 12 0 12 0.67138962 13 0 13 0.33446510 14 1 14 0.72187427 15 0 15 0.28193852 16 1 16 0.11258881 17 0 17 0.22001868 18 1 18 0.54681964 19 0 19 0.03336023 20 1 20 0.47007378 Can someone explain what am I doing wrong and why I don't get the same results? Thanks! -- View this message in context: http://r.789695.n4.nabble.com/Problems-in-using-GMM-for-calculating-linear-regression-tp4638557.html Sent from the R help mailing list archive at Nabble.com. ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.