Dear all,

I am trying to apply the logistic regression to determine the limit of
detection (LOD) of a molecular biology assay, the polymerase chain reaction
(PCR). The aim of the procedure is to identify the value (variable
"dilution") that determine a 95% probability of success, that is
"positive"/"total"=0.95. The procedure I have implemented seemed to work
looking at the figure obtained from the sample set 1; however the figure
obtained from the sample set 2 shows that interpolation is not correct.
Admittedly, these are not the best sample sets to determine the LOD -there
are too many 100% successes - but the regression should still work. 

Does anybody have some tip to solve this incongruence?

Many thanks,

Luigi Marongiu, MSc

 

----------------------------------------------------------------------------
----------------

 

### SAMPLE SET No. 1

 

 

### define data

     labs<-c("dilution", "total", "positive")

     p.1<-c(10, 20,  19)

     p.2<-c(100, 20, 20)

     p.3<-c(1000, 20, 20)

     p.4<-c(10000, 20, 20)

     p.5<-c(100000, 20, 20)

     p.6<-c(1000000, 20, 20)

 

### create data frame from matrix

     my.mat<-matrix(c(p.1, p.2, p.3, p.4, p.5, p.6), nrow=6, byrow=TRUE)

     dimnames(my.mat)<-list(c(1:6),labs)

     my.data<-as.data.frame(my.mat)

     attach(my.data)

     my.data

 

### define frequency data

     Y<-cbind(positive, total-positive)

 

 

### fit model LOGIT

     model<-glm(Y ~ dilution, family=binomial(link=logit), data=my.data)

 

### plot data and regression line

     plot(dilution, positive/total, pch=16, ylim=c(0,1), log = "x",
xaxt="n", xlim=c(1, 1000000),

main="Positive amplification by PCR", ylab="Fraction amplified",
xlab=expression(paste("Standard dilutions (c/",mu,"l)")))

 

### add x axis (William Dunlap, personal communication)

     xlim <- par("usr")[1:2]

     lab.x <- seq(ceiling(xlim[1]), floor(xlim[2]))

     axis(side=1, at=10^lab.x, lab=as.expression(lapply(lab.x,
function(x)bquote(10^.(x)))))

 

     lines(dilution, fitted(model), lty=1)

 

### set significance level and logit 

     # define significance

           level<-0.95 

     # set logit value

           logit.LOD<-log(level/(1-level))

 

### set function to determine LOD (Vito Ricci, personal communication)

     LOD<-function(mod) as.vector((logit.LOD-coef(mod)[1])/coef(mod)[2])

 

### computation of the LOD value

     x.LOD<-LOD(model)

 

### compute S.E.

     # set variables

           co<-model$coef

           model.sum<-summary(model)

           SE.co<-model.sum$coef[,2]

           COV.co<-model.sum$cov.scaled[1,2]

     # compute SE

           SE.LOD<-abs(x.LOD) * sqrt( (SE.co[1]/co[1])^2 +

                              (SE.co[2]/co[2])^2 -

                              2*(COV.co/(co[1]*co[2])) )

           log.SE.LOD<-log10(SE.LOD)

 

     # define boundaries

           bottom<-x.LOD-(1.96*log.SE.LOD)

           ceiling<-x.LOD+(1.96*log.SE.LOD)

 

 

### REPORT

     # mean value

           x.LOD

     # bottom

           bottom

     # ceiling

           ceiling

 

### plot LOD

     lines(c(0.1, x.LOD), c(0.95, 0.95), lty=2)

     lines(c(x.LOD, x.LOD), c(0.95, 0), lty=2)

     text(x.LOD, 0.02, labels = round(x.LOD, digits = 2), pos=4, offset =
0.3, cex = 0.7)

     text(1, 0.93, label="95%", pos=4, offset = 0.3, cex = 0.7)

 

     lines(c(bottom, ceiling), c(0,0), lty=1, lend="butt", lwd=0.7)

     points(x.LOD, 0, pch=21, cex=0.8, bg="white")

 

detach(my.data)

############################################################################
###############################################################

 

############################################################################
###############################################################

### SAMPLE SET No. 2

 

 

### define data

     labs<-c("dilution", "total", "positive")

     p.1<-c(10, 10,  4)

     p.2<-c(100, 10, 10)

     p.3<-c(1000, 10, 10)

     p.4<-c(10000, 10, 10)

     p.5<-c(100000, 10, 10)

     p.6<-c(1000000, 10, 10)

 

### create data frame from matrix

     my.mat<-matrix(c(p.1, p.2, p.3, p.4, p.5, p.6), nrow=6, byrow=TRUE)

     dimnames(my.mat)<-list(c(1:6),labs)

     my.data<-as.data.frame(my.mat)

     attach(my.data)

     my.data

 

### define frequency data

     Y<-cbind(positive, total-positive)

 

 

### fit model LOGIT

     model<-glm(Y ~ dilution, family=binomial(link=logit), data=my.data)

 

### plot data and regression line

     plot(dilution, positive/total, pch=16, ylim=c(0,1), log = "x",
xaxt="n", xlim=c(1, 1000000),

main="Positive amplification by PCR", ylab="Fraction amplified",
xlab=expression(paste("Standard dilutions (c/",mu,"l)")))

 

### add x axis (William Dunlap, personal communication)

     xlim <- par("usr")[1:2]

     lab.x <- seq(ceiling(xlim[1]), floor(xlim[2]))

     axis(side=1, at=10^lab.x, lab=as.expression(lapply(lab.x,
function(x)bquote(10^.(x)))))

 

     lines(dilution, fitted(model), lty=1)

 

### set significance level and logit 

     # define significance

           level<-0.95 

     # set logit value

           logit.LOD<-log(level/(1-level))

 

### set function to determine LOD (Vito Ricci, personal communication)

     LOD<-function(mod) as.vector((logit.LOD-coef(mod)[1])/coef(mod)[2])

 

### computation of the LOD value

     x.LOD<-LOD(model)

 

### compute S.E.

     # set variables

           co<-model$coef

           model.sum<-summary(model)

           SE.co<-model.sum$coef[,2]

           COV.co<-model.sum$cov.scaled[1,2]

     # compute SE

           SE.LOD<-abs(x.LOD) * sqrt( (SE.co[1]/co[1])^2 +

                              (SE.co[2]/co[2])^2 -

                              2*(COV.co/(co[1]*co[2])) )

           log.SE.LOD<-log10(SE.LOD)

 

     # define boundaries

           bottom<-x.LOD-(1.96*log.SE.LOD)

           ceiling<-x.LOD+(1.96*log.SE.LOD)

 

 

### REPORT

     # mean value

           x.LOD

     # bottom

           bottom

     # ceiling

           ceiling

 

### plot LOD

     lines(c(0.1, x.LOD), c(0.95, 0.95), lty=2)

     lines(c(x.LOD, x.LOD), c(0.95, 0), lty=2)

     text(x.LOD, 0.02, labels = round(x.LOD, digits = 2), pos=4, offset =
0.3, cex = 0.7)

     text(1, 0.93, label="95%", pos=4, offset = 0.3, cex = 0.7)

 

     lines(c(bottom, ceiling), c(0,0), lty=1, lend="butt", lwd=0.7)

     points(x.LOD, 0, pch=21, cex=0.8, bg="white")

 

detach(my.data)

############################################################################
###############################################################


        [[alternative HTML version deleted]]

______________________________________________
R-help@r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.

Reply via email to