Hi, I need some help to figure out the df I should use in t test for my contrast. I have 5 treatments and 5 phenotypes, I would like to compute the difference of treatment means for each phenotype and do t test, such as treatment1 vs treatment2 on phenotype1 How should I calculate the pooled degrees of freedom for the t tests of all the contrasts? Thank you very much.
Qian >mylong.lme <- lme(dscore~Trt.Pheno-1, data=mylong, random=~1 | ID, method="ML") > summary(mylong.lme) Linear mixed-effects model fit by maximum likelihood Data: mylong AIC BIC logLik 14789.14 14949.83 -7367.571 Random effects: Formula: ~1 | ID (Intercept) Residual StdDev: 1.40765 3.039555 Fixed effects: dscore~ Trt.Pheno - 1 Value Std.Error DF t-value p-value TrtPheno1_1 : -2.516975 0.2788703 2412 -9.025613 0.0000 Trt.Pheno2_1 : -1.172767 0.3781179 2412 -3.101590 0.0019 Trt.Pheno3_1 : -0.810177 0.2869447 2412 -2.823459 0.0048 Trt.Pheno4_1 : -1.518063 0.2791157 2412 -5.438830 0.0000 Trt.Pheno5_1 : -0.367947 0.3564081 2412 -1.032377 0.3020 .............. ............. coef <- fixed.effects(mylong.lme) covmat <- mylong.lme$varFix > c # my contrast matrix >mycontr.est <- c %*% coef >mycontr.var <- c %*% covmat %*% t(c) >t2 <- t(mycontr.est) %*% solve(mycontr.var) %*% mycontr.est >P<- 2*pt(sqrt(abs(t2)), df=????) > version _ platform i386-pc-mingw32 arch i386 os mingw32 system i386, mingw32 status major 2 minor 14.0 year 2011 month 10 day 31 svn rev 57496 language R version.string R version 2.14.0 (2011-10-31) ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.