Hello everyone, I want to calculate type I error rate for modified F statistic for one way robust anova. I need to find the j group trimmed mean and winsorized sum of squared deviations. Here I attached my code for j=2 to make it simple. Originally I have j=4. Hope you can help. I need to run it for 1000 times
My problem is: i) the value of F-test obtain from my simulation below is in negative value..There might be something wrong in my coding ii) after obtain F value, how i can proceed to obtain type I error rate? h=0 g=0 n=15 alpha=0.1 k=floor(alpha*n)+1 r=k-(alpha*n) i=k+1 m=n-k J=2 trim1<-rep(NA,asim) trim2<-rep(NA,asim) pw<-rep(NA,asim) qw<-rep(NA,asim) px<-rep(NA,asim) qx<-rep(NA,asim) ssd1<-rep(NA,asim) ssd2<-rep(NA,asim) madN1<-rep(NA,asim) madN2<-rep(NA,asim) lo.w<-rep(NA,asim) up.w<-rep(NA,asim) lo.x<-rep(NA,asim) up.x<-rep(NA,asim) hw<-rep(NA,asim) hx<-rep(NA,asim) xbar.t<-rep(NA,asim) num<-rep(NA,asim) df2<-rep(NA,asim) denom<-rep(NA,asim) F<-rep(NA,asim) asim<-1000 for(j in 1:asim) { print(j) set.seed(j) a<-rnorm(15,0,1) b<-rnorm(15,0,1) w<-a*exp(h*a^2/2) x<-b*exp(h*b^2/2) matw<-sort(w) matx<-sort(x) trim1[j]=1/((1-2*alpha)*n)*(sum(matw[i:m])+r*(matw[k]+matw[n-k+1])) trim2[j]=1/((1-2*alpha)*n)*(sum(matx[i:m])+r*(matx[k]+matx[n-k+1])) madN1[j]<-mad(w) madN2[j]<-mad(x) lo.w[j]<-length(which(w-median(w)<(-2.24*madN1[j]))) up.w[j]<-length(which(w-median(w)>(2.24*madN1[j]))) lo.x[j]<-length(which(x-median(x)<(-2.24*madN2[j]))) up.x[j]<-length(which(x-median(x)>(2.24*madN2[j]))) pw[j]<-up.w[j]+2 qw[j]<-n-up.w[j]-1 px[j]<-up.x[j]+2 qx[j]<-n-up.x[j]-1 ssd1[j]<-lo.w[j]*(matw[lo.w[j]+1]-trim1[j])^2 + (matw[pw[j]:qw[j]]-trim1[j])^2 + up.w[j]*(matw[n-up.w]-trim1[j])^2 - ((lo.w)*(matw[lo.w+1]-trim1[j])+ (up.w)*(matw[n-up.w]-trim1[j]))^2 ssd2[j]<-lo.x[j]*(matx[lo.x[j]+1]-trim2[j])^2 + (matx[px[j]:qx[j]]-trim2[j])^2 + up.x[j]*(matx[n-up.x]-trim2[j])^2 - ((lo.x)*(matw[lo.x+1]-trim2[j])+ (up.x)*(matx[n-up.x]-trim2[j]))^2 hw[j]<-n-lo.w[j]-up.w[j] hx[j]<-n-lo.x[j]-up.x[j] H[j]=hw[j]+hx[j] xbar.t[j]<-(hw[j]*trim1[j]+hx[j]*trim2[j])/H[j] num[j]<-( (trim1[j]-xbar.t[j])^2 + (trim2[j]-xbar.t[j])^2)^2 )/J-1 df2[j]<-H[j]-J denom[j]<-(ssd1[j]+ssd2[j])/df2[j] F[j]<-num[j]/denom[j] } Graduate student, Department of Mathematics & Statistics, UPM -- View this message in context: http://r.789695.n4.nabble.com/need-help-to-find-type-I-error-rate-for-modified-F-statistic-tp4631661.html Sent from the R help mailing list archive at Nabble.com. [[alternative HTML version deleted]] ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.