Dear Christian, An illustrative and simple example follows:
> y<-rnorm(100,0,1) #response variable > x1<-rnorm(100,0,1) #1st covariate > x2<-rnorm(100,0,1) #2nd covariate > > lm1<-lm(y~x1+x2) #fitting a linear model > cbind(summary(lm1)$coef[,1],summary(lm1)$coef[,1]) # obtaining the > estimates and related p-values [,1] [,2] (Intercept) -0.02997559 -0.02997559 x1 -0.06170968 -0.06170968 x2 -0.12740465 -0.12740465 Here, the 1st column corresponds tı the estimates and 2nd one correspnds to the related p-values. I think you can easily adapt this to your datasets and combine muliple results of multiple datasets. Best Ozgur ----- ************************************ Ozgur ASAR Research Assistant Middle East Technical University Department of Statistics 06531, Ankara Turkey Ph: 90-312-2105309 http://www.stat.metu.edu.tr/people/assistants/ozgur/ -- View this message in context: http://r.789695.n4.nabble.com/Customized-R-Regression-Output-tp4631497p4631499.html Sent from the R help mailing list archive at Nabble.com. ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.