On May 26, 2012, at 7:50 AM, R. Michael Weylandt wrote:

Thank you for your list of numbers. Next time I run out I'll know
where to find some.

Now what exactly is your question? Any series of data can be a time
series -- it's just a matter of interpretation.

After I stopped chuckling at Michael's response, I copied that list to my clipboard, clicked once on my Rconsole window, and typed:

vec <- scan()  # and hit return

I then pasted the clipboard contents to the console, watched as 100 numeric values were passed on to 'vec' and hit enter to cause a double <cr> to signal to scan() to stop entry. I then typed:

plot(vec)

And one can then see that most of the numbers lie between 0 and 1.5. I thought I saw a "hard ceiling" at around 1.5 and looking at the data I wondered if the several values of 1.442... were the same:

> vec[vec==1.4424189950435]
[1] 1.442419 1.442419 1.442419 1.442419 1.442419 1.442419 1.442419 1.442419 1.442419 1.442419
[11] 1.442419 1.442419 1.442419

There does seem to be a discrete process underlying this. There are only 32 discrete values, and here at the 10 most common:

> rev(table(vec)[order(table(vec))] )[1:10]
vec
1.4424189950435 1.22726162946495 1.35785109728356 0.970883941918588 0.774234247460432 13 11 7 7 6 1.10704609982913 0.9670580678417 0.889046409368551 0.822170913920467 4.91679981837699 5 5 5 5 3

Four values stand out as materially different. Three of them appear to have hit some sort of "secondary ceiling" at a value of 5 and another is sitting all alone at 2.3 (roughly).

Now as Michael asked .... what WAS the question?

--
David.


Michael

On Sat, May 26, 2012 at 5:13 AM, sagarnikam123 <sagarnikam...@gmail.com > wrote:
i have following numbers

        0.889046409368551
        1.22726162946495
        1.22726162946495
        1.35785109728356
        1.35785109728356
        1.10704609982913
        1.4424189950435
        1.2277843378837
        1.35785109728356
        0.970883941918588
        0.822170913920467
        1.35785109728356
        0.358815782262543
        0.774234247460432
        0.822170913920467
        0.822170913920467
        0.72599976881814
        0.671583894425946
        0.813223271443211
        0.774234247460432
        1.00184802593319
        1.4424189950435
        1.22726162946495
        0.970883941918588
        0.358815782262543
        1.31016840948316
        0.970883941918588
        1.4424189950435
        0.889046409368551
        4.91679981837699
        1.2277843378837
        1.21605333196293
        0.369861996166875
        0.774748148811057
        0.369861996166875
        1.4424189950435
        1.22726162946495
        1.4424189950435
        1.22726162946495
        1.16291100715022
        2.33863311242767
        0.774234247460432
        4.91679981837699
        0.9670580678417
        0.970883941918588
        0.9670580678417
        1.10704609982913
        4.91679981837699
        1.4424189950435
        1.05410985855726
        1.22726162946495
        1.21605333196293
        1.35785109728356
        0.822170913920467
        1.4424189950435
        0.970883941918588
        0.835429195630044
        0.774234247460432
        1.61328986496929
        0.970883941918588
        1.2277843378837
        1.22726162946495
        0.970883941918588
        1.10704609982913
        1.10704609982913
        1.10704609982913
        1.4424189950435
        1.22726162946495
        1.4424189950435
        1.35785109728356
        0.9670580678417
        0.9670580678417
        0.885419165744907
        1.16291100715022
        0.369861996166875
        0.9670580678417
        0.774748148811057
        1.22726162946495
        1.4424189950435
        1.22726162946495
        1.31016840948316
        0.813223271443211
        1.4424189950435
        0.822170913920467
        1.05410985855726
        0.853014111520372
        1.3245534157835
        0.774234247460432
        0.774234247460432
        1.22726162946495
        0.889046409368551
        1.4424189950435
        0.842622628771215
        0.889046409368551
        0.889046409368551
        1.31898472833595
        1.4424189950435
        1.35785109728356
        0.682617341489085
        0.965180291004232

i don't want to check by plotting graph of above data(because i have
thousands of such data structures)
is there any function in R to check it ?
how can i check validity by programming?



--
View this message in context: 
http://r.789695.n4.nabble.com/how-to-check-given-number-seq-is-time-series-or-not-tp4631434.html
Sent from the R help mailing list archive at Nabble.com.

______________________________________________
R-help@r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.

______________________________________________
R-help@r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.

______________________________________________
R-help@r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.

Reply via email to