Hello again, You are absolutely right about probabilities.. Thanks for reminding me about that.
I did exactly how you said but in the end I receive the error : "objective function in optim evaluates to length 12 not 1". I checked how llfn give a vector instead of scalar, but couldn't figure it out. Can you please tell me how did you obtain those estimates? Thanks again, Best, Marc Rui Barradas wrote > > Hello, again. > > Bug report: > 1. Your densities can return negative values, 1 - exp(...) < 0. > Shouldn't those be 1 PLUS exp()? > > P3 <- function(bx,b3,b,tt) { > P <- exp(bx*x+b3+b*(tt == 1))/(1+exp(bx*x+b3+b*(tt == 1))) > return(P) > } > > And the same for P2 and P1? > > 2. Include 'a' and 'tt' as llfn parameters and call like the following. > > llfn <- function(param, a, tt) { > > [... etc ...] > return(-llfn) > } > > start.par <- rep(0, 5) > est <- optim(start.par, llfn, gr=NULL, a=a, tt=tt) > est > $par > [1] 4.1776294 -0.9952026 -0.7667640 -0.1933693 0.7325221 > > $value > [1] 0 > > $counts > function gradient > 44 NA > > $convergence > [1] 0 > > $message > NULL > > > Note the optimum value of zero, est$value == 0 > > Rui Barradas > > infinitehorizon wrote >> >> By the way, in my last post I forgot to return negative of llfn, hence >> the llfn will be as follows: >> >> llfn <- function(param) { >> >> bx <- param[1] >> b1 <- param[2] >> b2 <- param[3] >> b3 <- param[4] >> b <- param[5] >> >> lL1 <- log(L1(bx,b1,b2,b,tt)) >> lL2 <- log(L2(bx,b1,b2,b3,b,tt)) >> lL3 <- log(L3(bx,b1,b2,b3,b,tt)) >> >> llfn <- (a==1)*lL1+(a==2)*lL2+(a==3)*lL3 >> return(-llfn) >> } >> >> However, it does not fix the problem, I still receive the same error.. >> > -- View this message in context: http://r.789695.n4.nabble.com/Discrete-choice-model-maximum-likelihood-estimation-tp4629877p4629952.html Sent from the R help mailing list archive at Nabble.com. ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.