Thanks again for your swift response!! With your last line, I get
> rowMeans(sapply(stor.confint, colMeans)) 2.5 % 97.5 % 0.3256882 0.4604677 I need the values (2.5% and 97.5%) for each variable of my model. I don't think this what I am getting. This is what my script looks like now, after your help: N = length (data_Pb[,1]) B = 10000 stor.r2 = rep(0,B) stor.coeffs <- vector("list", B) stor.confint <- vector("list", B) for (i in 1:B){ idx = sample(1:N, replace=T) newdata = data_Pb[idx,] L_NPRI_25k <- log(newdata$NPRI_25k+1) data_Pb.boot = lm(newdata$Log_Level ~ newdata$Ind_5k + newdata$MineP_50k + newdata$NPRI_10k + L_NPRI_25k ) stor.r2[i] = summary(data_Pb.boot)$r.squared stor.coeffs [[i]] <- coef(data_Pb.boot) stor.confint[[i]] <- confint(data_Pb.boot) } hist(stor.r2, xlab="R-squared",main="Distribution of R-squared - Lead (log)") summary(stor.r2) rowMeans(sapply(stor.confint, colMeans)) rowMeans(sapply(stor.coeffs, colMeans)) Thanks Steeve -- View this message in context: http://r.789695.n4.nabble.com/95-confidence-interval-of-the-coefficients-from-a-bootstrap-analysis-tp4599692p4599994.html Sent from the R help mailing list archive at Nabble.com. ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.