Hello, I am trying to fit my histogram to a smooth Gaussian curve(the data closely resembles one except a few bars).
This is my code : #!/usr/bin/Rscript out_file = "irc_20M_opencl_test.png" png(out_file) scan("my.csv") -> myvals hist(myvals, breaks = 50, main = "My Distribution",xlab = "My Values") pdens <- density(myvals, na.rm=T) plot(pdens, col="black", lwd=3, xlab="My values", main="Default KDE") dev.off() print(paste("Plot was saved in:", getwd())) the problem here is that I a jagged distribution, you can see the result : http://s15.postimage.org/9ucmkx3bf/foobar.png this is the original histogram : http://s12.postimage.org/e0lfp7d5p/foobar2.png any ideas on how I can smoothen it to a Gaussian curve? Thanks, - vihan ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.