Here is my code:
######Centering predictors####### verbal.ability_C <- verbal.ability - mean(verbal.ability) children_C <- children - mean(children) age_C <- age - mean(age) education_C <- education - mean(education) work.from.home.frequency_C <- work.from.home.frequency - mean(work.from.home.frequency) religious.orientation_C <- religious.orientation - mean(religious.orientation) political.orientation_C <- political.orientation - mean(political.orientation) sexual.orientation_C <- sexual.orientation -mean(sexual.orientation) ########## Logistic Regression########### logistic.model <- glm( fire.communist.teacher ~ age_C + sex + children_C + currently.married + religious.orientation_C + political.orientation_C, binomial(logit) ) summary( logistic.model ) exp( coefficients( logistic.model ) ) #######Probit/Binomial Regression####### install.packages("MASS") library(MASS) probit.model <- polr( as.factor(verbal.ability) ~ education_C + children_C + currently.married + work.from.home.frequency_C, method="probit") summary( probit.model) Here is the output with I look at my data using the str(my.data) command: 'data.frame': 2044 obs. of 13 variables: $ sexual.orientation : int -1 -1 NA NA NA NA NA -1 NA NA ... $ political.orientation : int 5 5 6 0 3 6 4 5 6 NA ... $ religious.orientation : int 4 1 4 4 4 1 2 4 4 4 ... $ weekly.hours.on.internet: int 3 20 NA NA NA NA NA NA NA 0 ... $ verbal.ability : int 6 9 NA 3 NA NA NA 8 NA NA ... $ work.from.home.frequency: int 3 4 NA NA NA NA 1 NA 1 1 ... $ fire.communist.teacher : int NA NA 1 NA 0 NA 0 0 0 1 ... $ currently.married : int -1 -1 -1 -1 1 -1 -1 -1 1 -1 ... $ children : int 0 0 3 5 8 2 1 1 3 2 ... $ education : int 16 16 8 10 0 6 16 15 14 14 ... $ partnrs5 : int 6 5 -1 99 -1 -1 -1 0 -1 -1 ... $ age : int 31 23 71 82 78 40 46 80 31 99 ... $ sex : int 1 -1 -1 -1 -1 1 -1 -1 -1 -1 ... I tried using the na.action command by putting right after the 'binomial(logit)' syntax, but it didn't work. I am not sure if I am using it properly though. So, I have tried this syntax to deal with the missing data: logistic.model <- glm( fire.communist.teacher ~ age_C + sex + children_C + currently.married + religious.orientation_C + political.orientation_C, binomial(logit), na.action=na.exclude ) as well as: logistic.model <- glm( fire.communist.teacher ~ age_C + sex + children_C + currently.married + religious.orientation_C + political.orientation_C, binomial(logit), na.action=na.exclude, data=na.omit(DataMiss) ) -- View this message in context: http://r.789695.n4.nabble.com/Vector-errors-and-missing-values-tp4437306p4438678.html Sent from the R help mailing list archive at Nabble.com. ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.