I have been working with the pls procedure and have problems getting the procedure to work with matrix or frame data. I suspect the problem lies in my understanding of frames, but can't find anything in the documentation that will help.
Here is what I have done: I read in an 10000 x 8 table of data, and assign the first four columns to matrix A and the second four to matrix B pls <- read.table("C:/Users/Chris/Desktop/SEM Book/SEM Stat Example/Simple Header Data for SEM.csv", header=TRUE, sep=",", na.strings="NA", dec=".", strip.white=TRUE) A <- c(pls[1],pls[2],pls[3],pls[4]) B <- c(pls[5],pls[6],pls[7],pls[8]) I then put these into the data.fram C, retaining the matrix structure per guidelines in the JSS article on the pls package C <- data.frame(h = I(as.matrix(A)), c = I(as.matrix(B))) showData(C, placement='-20+200', font=getRcmdr('logFont'), maxwidth=80, maxheight=30) 63 55 1 0 44 37200 4 0 145 52 1 1 33 69300 4 1 104 32 0 1 68 56900 3 1 109 69 1 1 94 44300 6 1 221 61 0 1 72 79800 6 0 110 40 1 1 48 17600 5 1 194 41 0 0 85 58100 4 0 120 76 1 1 19 76700 3 0 210 61 0 0 41 37600 1 0 243 101 1 1 57 40800 5 1 163 62 0 1 64 400 3 0 So the h. and the c. columns should be matrices that I can regress in plsr function: apls <- plsr(h ~ c, data = C) summary(apls) But this gives me: [34] ERROR: invalid type (list) for variable 'h' I can get the plsr function to work with scalars for both predictor and response. Can anyone tell me where I have gone wrong on the pls input? apls <- plsr(w ~ h, data = pls) summary(apls) Data: X dimension: 10000 1 Y dimension: 10000 1 Fit method: kernelpls Number of components considered: 1 TRAINING: % variance explained 1 comps X 100.000 w 2.293 -- View this message in context: http://r.789695.n4.nabble.com/Dataframes-in-PLS-package-tp4405798p4405798.html Sent from the R help mailing list archive at Nabble.com. ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.