Does this look similar to the error you are getting: > while(NA == TRUE) 1 Error in while (NA == TRUE) 1 : missing value where TRUE/FALSE needed
SO 'notconverged' is probably equal to NA. BTW, what is the value of 'tol'; I do not see it defined. So when computing 'notconverged' you have generated an NA. You can test it to see if this is true. You can use the following command: options(error=utils::recover) and then learn how to use the 'browser' to examine variables when the error occurs. On Fri, Dec 23, 2011 at 5:44 AM, Michael Pearmain <michael.pearm...@gmail.com> wrote: > Merry Xmas to all, > > I am writing a function and curiously this runs sometimes on one data set > and fails on another and i cannot figure out why. > Any help much appreciated. > > If i run the code below with > data <- iris[ ,1:4] > The code runs fine, but if i run on a large dataset i get the following > error (showing data structures as matrix is large) > >> str(cluster.data) > num [1:9985, 1:811] 0 0 0 0 0 0 0 0 0 0 ... > - attr(*, "dimnames")=List of 2 > ..$ : NULL > ..$ : chr [1:811] "1073949105" "1073930585" "1073843224" "1073792624" ... > #(This is intended to be chr) >> str(iris) > 'data.frame': 150 obs. of 5 variables: > $ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ... > $ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ... > $ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ... > $ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ... > $ Species : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 > 1 1 1 ... >> str(as.matrix(iris[,1:4])) > num [1:150, 1:4] 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ... > - attr(*, "dimnames")=List of 2 > ..$ : NULL > ..$ : chr [1:4] "Sepal.Length" "Sepal.Width" "Petal.Length" "Petal.Width" > > n.cols <- ncol(data) > n.rows <- nrow(data) > X <- as.matrix(data) > stepsize <- 0.05 > c1 <- (2 * pi) ** (n.cols / 2) > c2 <- n.rows * (smoothing ** (n.cols + 2)) > c3 <- n.rows * (smoothing ** n.cols) > > Kexp <- function(sqs){ > return (exp((-1 * sqs) / (2 * smoothing ** 2))) > } > > FindGradient <- function(x){ > XmY <- t(x - t(X)) > sqsum <- rowSums(XmY * XmY) > K <- sapply(sqsum, Kexp) > dens <- ((c1 * c3) ** -1) * sum(K) > grad <- -1 * ((c1 * c2) ** -1) * colSums(K * XmY) > return (list(gradient = grad, > density = dens)) > } > > attractors <- matrix(0, n.rows, n.cols) > densities <- matrix(0, n.rows) > > >> density.attractors <- > sapply(rep(1:n.rows), function(i) { > notconverged <- TRUE > # For each row loop through and find the attractor and density value. > x <- (X[i, ]) > iters <- as.integer(1) > # Run gradient ascent for each point to obtain x* > while(notconverged == TRUE) { > find.gradient <- FindGradient(x) > next.x <- x + stepsize * find.gradient$gradient > change <- sqrt(sum((next.x - x) * (next.x - x))) > notconverged <- ifelse(change > tol, TRUE, FALSE) > x <- next.x > iters <- iters + 1 > } > > # store the attractor and density value > return(c(densities[i, ] <- find.gradient$density, > attractors[i, ] <- x)) > }) > > Error in while (notconverged == TRUE) { : > missing value where TRUE/FALSE needed >> > > Any help would be great > > Mike > > [[alternative HTML version deleted]] > > ______________________________________________ > R-help@r-project.org mailing list > https://stat.ethz.ch/mailman/listinfo/r-help > PLEASE do read the posting guide http://www.R-project.org/posting-guide.html > and provide commented, minimal, self-contained, reproducible code. -- Jim Holtman Data Munger Guru What is the problem that you are trying to solve? Tell me what you want to do, not how you want to do it. ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.