Hi, I'm sure this is simple, but I haven't been able to find this in TFM, say I have some data in R like this (pasted here: http://pastebin.com/raw.php?i=sjS9Zkup):
> head(df) gender age smokes disease Y 1 female 65 ever control 0.18 2 female 77 never control 0.12 3 male 40 state1 0.11 4 female 67 ever control 0.20 5 male 63 ever state1 0.16 6 female 26 never state1 0.13 where unique(disease) == c("control", "state1", "state2") and unique(smokes) == c("ever", "never", "", "current") I then fit a linear model like: > model = lm(Y ~ smokes + disease + age + gender, data=df) And I want to understand the difference between: > print(summary(model)) Call: lm(formula = Y ~ smokes + disease + age + gender, data = df) Residuals: Min 1Q Median 3Q Max -0.22311 -0.08108 -0.03483 0.05604 0.46507 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 0.1206825 0.0521368 2.315 0.0211 * smokescurrent 0.0150641 0.0444466 0.339 0.7348 smokesever 0.0498764 0.0326254 1.529 0.1271 smokesnever 0.0394109 0.0349142 1.129 0.2597 diseasestate1 0.0018739 0.0176817 0.106 0.9157 diseasestate2 -0.0009858 0.0178651 -0.055 0.9560 age 0.0002841 0.0006290 0.452 0.6518 gendermale 0.1164889 0.0128748 9.048 <2e-16 *** --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 0.1257 on 397 degrees of freedom Multiple R-squared: 0.1933, Adjusted R-squared: 0.1791 F-statistic: 13.59 on 7 and 397 DF, p-value: 8.975e-16 and: > anova(model) Analysis of Variance Table Response: Y Df Sum Sq Mean Sq F value Pr(>F) smokes 3 0.1536 0.05120 3.2397 0.02215 * disease 2 0.0129 0.00647 0.4096 0.66420 age 1 0.0431 0.04310 2.7270 0.09946 . gender 1 1.2937 1.29373 81.8634 < 2e-16 *** Residuals 397 6.2740 0.01580 --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 I understand (hopefully correctly) that anova() tests by adding each covariate to the model in order it is specified in the formula. More specific questions are: 1) How do the p-values for smokes* in summary(model) relate to the Pr(>F) for smokes in anova 2) what do the p-values for each of those smokes* mean exactly? 3) the summary above shows the values for diseasestate1 and diseasestate2 how can I get the p-value for diseasecontrol? (or, e.g. genderfemale) thanks. ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.