fit1<-rq(formula=op~inp1+inp2+inp3+inp4+inp5+inp6+inp7+inp8+inp9,tau=0.15,data=wbc) fit2<-rq(formula=op~inp1+inp2+inp3+inp4+inp5+inp6+inp7+inp8+inp9,tau=0.5,data=wbc) fit3<-rq(formula=op~inp1+inp2+inp3+inp4+inp5+inp6+inp7+inp8+inp9,tau=0.15,data=wbc) fit4<-rq(formula=op~inp1+inp2+inp3+inp4+inp5+inp6+inp7+inp8+inp9,tau=0.15,data=wbc) fit5<-rq(formula=op~inp1+inp2+inp3+inp4+inp5+inp6+inp7+inp8+inp9,tau=0.15,data=wbc) *output of tau=0.15*fit1 Call: rq(formula = op ~ inp1 + inp2 + inp3 + inp4 + inp5 + inp6 + inp7 + inp8 + inp9, tau = 0.15, data = wbc)
Coefficients: (Intercept) inp1 inp2 inp3 inp4 inp5 -0.191528450 0.005276347 0.021414032 0.016034803 0.007510343 0.005276347 inp6 inp7 inp8 inp9 0.058708544 0.005224906 0.006804871 -0.003931540 Degrees of freedom: 673 total; 663 residual *output of tau=0.3*fit2 Call: rq(formula = op ~ inp1 + inp2 + inp3 + inp4 + inp5 + inp6 + inp7 + inp8 + inp9, tau = 0.3, data = wbc) Coefficients: (Intercept) inp1 inp2 inp3 inp4 -1.111111e-01 5.776765e-19 4.635734e-18 1.874715e-18 2.099872e-18 inp5 inp6 inp7 inp8 inp9 -4.942052e-19 1.111111e-01 2.205289e-18 4.138435e-18 9.300642e-19 Degrees of freedom: 673 total; 663 residual *output of tau=0.5*fit3 Call: rq(formula = op ~ inp1 + inp2 + inp3 + inp4 + inp5 + inp6 + inp7 + inp8 + inp9, tau = 0.5, data = wbc) Coefficients: (Intercept) inp1 inp2 inp3 inp4 -1.400000e-01 5.810236e-17 4.000000e-02 1.087160e-16 4.297771e-18 inp5 inp6 inp7 inp8 inp9 8.045868e-17 8.000000e-02 6.841101e-17 2.000000e-02 7.560947e-17 Degrees of freedom: 673 total; 663 residual *output of tau=0.65* Call: rq(formula = op ~ inp1 + inp2 + inp3 + inp4 + inp5 + inp6 + inp7 + inp8 + inp9, tau = 0.65, data = wbc) Coefficients: (Intercept) inp1 inp2 inp3 inp4 inp5 -0.193593706 0.005012804 0.044208182 0.008994346 0.006214294 0.007622629 inp6 inp7 inp8 inp9 0.064595895 0.006214294 0.028904532 0.001775512 Degrees of freedom: 673 total; 663 residual *output of tau=0.9:* fit5 Call: rq(formula = op ~ inp1 + inp2 + inp3 + inp4 + inp5 + inp6 + inp7 + inp8 + inp9, tau = 0.9, data = wbc) Coefficients: (Intercept) inp1 inp2 inp3 inp4 inp5 -0.249006688 0.040430238 0.010854846 0.031021326 0.013558943 0.024867111 inp6 inp7 inp8 inp9 0.050441784 0.024867111 0.027018345 0.001079872 Degrees of freedom: 673 total; 663 residual < b> so fit1 fit2,fit3,fit4,fit5 are the 5 quantiles of the wbc dataset.but why i am encoutering the following error while using anova* *anova(fit1,fit2,fit3,fit4,fit5); Error in solve.default(D %*% W %*% t(D), D %*% coef) : system is computationally singular: reciprocal condition number = 5.58091e-19 In addition: Warning messages: 1: In summary.rq(x, se = "nid", covariance = TRUE) : 93 non-positive fis 2: In summary.rq(x, se = "nid", covariance = TRUE) : 138 non-positive fis 3: In summary.rq(x, se = "nid", covariance = TRUE) : 206 non-positive fis 4: In summary.rq(x, se = "nid", covariance = TRUE) : 53 non-positive fis 5: In summary.rq(x, se = "nid", covariance = TRUE) : 30 non-positive fis* -- View this message in context: http://r.789695.n4.nabble.com/about-error-while-using-anova-function-tp4159463p4159463.html Sent from the R help mailing list archive at Nabble.com. ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.