Whenever similar objects are to be handled with similar code, having the data frames stored in lists or even as one big data frame is preferred. If you can load them as such, half the complexity is addressed right there. The for loop processing is usually wrapped up using base apply functions or "plyr" package functions. Those idioms are not necessarily faster than for loops, but they can wrap up some common split and assemble steps cleanly. --------------------------------------------------------------------------- Jeff Newmiller The ..... ..... Go Live... DCN:<jdnew...@dcn.davis.ca.us> Basics: ##.#. ##.#. Live Go... Live: OO#.. Dead: OO#.. Playing Research Engineer (Solar/Batteries O.O#. #.O#. with /Software/Embedded Controllers) .OO#. .OO#. rocks...1k --------------------------------------------------------------------------- Sent from my phone. Please excuse my brevity.
Kaiyin Zhong <kindlych...@gmail.com> wrote: >> for (d in paste('df', 1:3, sep='')) { >+ assign(d, as.data.frame(replicate(3, rnorm(4)))) >+ } >> dats = list(df1,df2,df3) >> for (i in 1:length(dats)) { >+ names(dats[[i]]) = c('w', 'l', 'h') >+ } >> dats >[[1]] > w l h >1 1.24319239 -0.05543649 0.05409178 >2 0.05124331 -1.89346950 0.33896273 >3 -1.69686777 -0.35963008 -0.91720034 >4 1.30786112 -0.23953238 0.94139356 > >[[2]] > w l h >1 -1.238519 -0.12352187 -1.2577607 >2 1.180469 2.38836107 2.9139199 >3 1.494369 -0.07088712 0.2372746 >4 1.942535 1.47911615 1.1431675 > >[[3]] > w l h >1 1.0198692 -1.4222194 1.9486072 >2 0.3057461 1.7630326 -0.6501801 >3 -0.5576854 -1.1637263 -0.1782680 >4 0.6625268 0.6913202 0.9588915 >> i = 1 >> for (n in paste('df', 1:3, sep='')) { >+ assign(n, dats[[i]]) >+ i = i+1 >+ } >> df1 > w l h >1 1.24319239 -0.05543649 0.05409178 >2 0.05124331 -1.89346950 0.33896273 >3 -1.69686777 -0.35963008 -0.91720034 >4 1.30786112 -0.23953238 0.94139356 > > [[alternative HTML version deleted]] > >______________________________________________ >R-help@r-project.org mailing list >https://stat.ethz.ch/mailman/listinfo/r-help >PLEASE do read the posting guide >http://www.R-project.org/posting-guide.html >and provide commented, minimal, self-contained, reproducible code. ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.