When I tried dput function, the result was this: > dput(x) c(20, 200, 2000, 20000)
> dput(y) c(0.45, 0.05, 0.5, 0.4, 0, 0.5, 0.4, 0.05, 0.4, 0.25, 0.35, 0.5, 0.05, 0.4, 0.5, 0.5, 0.5, 0.25, 0.85, 0.5, 0.5, 0.5, 0.25, 0.4, 0.25, 0.25, 0.4, 0.25, 0.5, 0.15, 0.25, 0.1, 0.25, 0.25, 0.015, 0.4, 0.5, 0.2, 0.25, 5e-05, 0.5, 0.005, 0.5, 0.25, 0.25, 0.4, 0.5, 0.4, 0.5, 0.5, 0.5, 0.5, 0.7142857143, 0.5, 0.005, 0.35, 0.5, 0.35, 0, 0.5, 0.25, 0.25, 1, 0.25, 0.1, 0.25, 0.5, 0.25, 0.55, NA, 0.25, 0.4, 0.35, 0.35, 0.25, 0, 0.8888888889, 0.5, 0.25, 0.5, 0.5, 0.5, 0.25, 0.2, 0.4, 0, 0.35, 0.025, 0.4, 0.5, 0.35, 0.25, 0.3, 0.25, 0.005, 0.5, 0.4, 0.05, 0.5, 0.4, 0.005, 0.45, 0.4, 0.35, 0.5, 0.005, 0.3, 0.05, 0.25, 0.35, 0.35, 0.75, 0.5, 0.375, 0.45, 0.1, 0.4, 0.25, 0.25, 0.25, 0.25, 0.5, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 0.2, 5e-04, 0.5, 0.5, 0.025, 0.25, 0.25, 0.01, 0.35, 0.15, 0.3, 0.5, 5e-04, 0.3, 0.4, 0.25, 0.4, 0.25, 0.85, 0.25, 0.375, 0.25, 0.1, 0.35, 0.05, 0.25, 0.2, 5000, 0.5, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 0.05, 5e-05, 0.5, 0.6, 0.005, 0.25, 0.25, 0.0025, 0.4, 0.1, 0.25, 0.5, 0.001, 0.25, 0.4, 0.25, 0.45, 0.05, 0.6, 0.25, 0.4, 5e-05, 0.05, 0.35, 0.05, 0.15, 0.05, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA) *** To have the same number of elements, I used the mean of each column to pair with 20 ... 20 000; but this would affect the p-value, because R does not know whar there were much more data than just four. The result is this: /> summary (lm (d~log(x))) Call: lm(formula = d ~ log(x)) Residuals: 1 3 4 -0.001108 0.010249 -0.009141 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 0.39008 0.02591 15.055 0.0422 * log(x) 0.06184 0.01115 5.547 0.1135 --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 0.01378 on 1 degrees of freedom (1 observation deleted due to missingness) Multiple R-squared: 0.9685, Adjusted R-squared: 0.937 F-statistic: 30.77 on 1 and 1 DF, p-value: 0.1135 Warning message: In log(x) : NaNs produced/ *** I tried to handle this by not using just a single number (the mean of the column), but compose the mean itself in the data: > d3 <- c(mean(rdiktator20), mean(rDiktator200), mean(rDikt2000), > mean(rDikt20000)) However, I did not ge any results from it: > lm (d3~log(x)) Error in lm.fit(x, y, offset = offset, singular.ok = singular.ok, ...) : 0 (non-NA) cases So there are still NAs blocking the linear model, although I had used the na.omit function... -- View this message in context: http://r.789695.n4.nabble.com/Lm-function-Error-in-model-frame-default-tp3933466p3937705.html Sent from the R help mailing list archive at Nabble.com. ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.