On Sun, 23 Oct 2011, Ron Michael wrote:

I think I am missing something with the chol() function. Here is my calculation:
 
mat
     [,1] [,2] [,3] [,4] [,5]
[1,]    1    3    0    0    0
[2,]    0    1    0    0    0
[3,]    0    0    1    0    0
[4,]    0    0    0    1    0
[5,]    0    0    0    0    1
eigen(mat)
$values
[1] 1 1 1 1 1
$vectors
     [,1]          [,2] [,3] [,4] [,5]
[1,]    1 -1.000000e+00    0    0    0
[2,]    0  7.401487e-17    0    0    0
[3,]    0  0.000000e+00    1    0    0
[4,]    0  0.000000e+00    0    1    0
[5,]    0  0.000000e+00    0    0    1
chol(mat)
Error in chol.default(mat) :
  the leading minor of order 2 is not positive definite

As per the eigen values my matrix is PD (as all eigen values are positive). Then why still I can not get Cholesky factor of my matrix? Can somebody point mw where I am missing?   Thanks and regards,

Reading the help page:

     Compute the Choleski factorization of a real symmetric
                                                  ^^^^^^^^^
     positive-definite square matrix.

....

     Note that only the upper triangular part of ‘x’ is used, so that
               ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

A <- diag(5)
A[1,2] <- A[2,1] <- 3
eigen(A)$values
[1]  4  1  1  1 -2



--
Brian D. Ripley,                  rip...@stats.ox.ac.uk
Professor of Applied Statistics,  http://www.stats.ox.ac.uk/~ripley/
University of Oxford,             Tel:  +44 1865 272861 (self)
1 South Parks Road,                     +44 1865 272866 (PA)
Oxford OX1 3TG, UK                Fax:  +44 1865 272595
______________________________________________
R-help@r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.

Reply via email to