Hi Michael: Here's one way to get it from ggplot2. To avoid possible overplotting, I jittered the points horizontally by +/- 0.2. I also reduced the point size from the default 2 and increased the line thickness to 1.5 for both fitted curves. In ggplot2, the term faceting is synonymous with conditioning (by groups).
library('HistData') library('ggplot2') ggplot(PearsonLee, aes(x = parent, y = child)) + geom_point(size = 1.5, position = position_jitter(width = 0.2)) + geom_smooth(method = lm, aes(weights = PearsonLee$weight), colour = 'green', se = FALSE, size = 1.5) + geom_smooth(aes(weights = PearsonLee$weight), colour = 'red', se = FALSE, size = 1.5) + facet_grid(chl ~ par) # If you prefer a legend, here's one take, pulling the legend inside # to the upper left corner. This requires a bit more 'trickery', but # the tricks are found in the ggplot2 book. ggplot(PearsonLee, aes(x = parent, y = child)) + geom_point(size = 1.5, position = position_jitter(width = 0.2)) + geom_smooth(method = lm, aes(weights = PearsonLee$weight, colour = 'Linear'), se = FALSE, size = 1.5) + geom_smooth(aes(weights = PearsonLee$weight, colour = 'Loess'), se = FALSE, size = 1.5) + facet_grid(chl ~ par) + scale_colour_manual(breaks = c('Linear', 'Loess'), values = c('green', 'red')) + opts(legend.position = c(0.14, 0.885), legend.background = theme_rect(fill = 'white')) HTH, Dennis On Fri, Oct 21, 2011 at 8:22 AM, Michael Friendly <frien...@yorku.ca> wrote: > In the HistData package, I have a data frame, PearsonLee, containing > observations on heights of parent and child, in weighted form: > > library(HistData) > >> str(PearsonLee) > 'data.frame': 746 obs. of 6 variables: > $ child : num 59.5 59.5 59.5 60.5 60.5 61.5 61.5 61.5 61.5 61.5 ... > $ parent : num 62.5 63.5 64.5 62.5 66.5 59.5 60.5 62.5 63.5 64.5 ... > $ frequency: num 0.5 0.5 1 0.5 1 0.25 0.25 0.5 1 0.25 ... > $ gp : Factor w/ 4 levels "fd","fs","md",..: 2 2 2 2 2 2 2 2 2 2 ... > $ par : Factor w/ 2 levels "Father","Mother": 1 1 1 1 1 1 1 1 1 1 ... > $ chl : Factor w/ 2 levels "Daughter","Son": 2 2 2 2 2 2 2 2 2 2 ... > > I want to make a 2x2 set of plots of child ~ parent | par+chl, with > regression lines and loess smooths, that > incorporate weights=frequency. The "frequencies" are not integers, so I > can't simply expand the > data frame. > > I'd also like to use different colors for the regression and smoothed lines. > Here's what I've tried using xyplot, all unsuccessful. I suppose I could > also use ggplot2, if I could do what > I want. > > xyplot(child ~ parent|par+chl, data=PearsonLee, weights=frequency, > type=c("p", "r", "smooth")) > xyplot(child ~ parent|par+chl, data=PearsonLee, type=c("p", "r", "smooth")) > > panel.lmline and panel.smooth don't have a weights= argument, though lm() > and loess() do. > > # Try to control line colors: unsuccessfully -- only one value of col.lin is > used > xyplot(child ~ parent|par+chl, data=PearsonLee, type=c("p", "r", "smooth"), > col.line=c("red", "blue")) > > ## try to use panel functions ... unsucessfully > xyplot(child ~ parent|par+chl, data=PearsonLee, type="p", > panel = function(x, y, ...) { > panel.xyplot(x, y, ...) > panel.lmline(x, y, col="blue", ...) > panel.smooth(x, y, col="red", ...) > } > ) > > The following, using base graphics, illustrates the difference between the > weighted and unweighted lines, > for the total data frame: > > with(PearsonLee, > { > lim <- c(55,80) > xv <- seq(55,80, .5) > sunflowerplot(parent,child, number=frequency, xlim=lim, ylim=lim, > seg.col="gray", size=.1) > # unweighted > abline(lm(child ~ parent), col="green", lwd=2) > lines(xv, predict(loess(child ~ parent), data.frame(parent=xv)), > col="green", lwd=2) > # weighted > abline(lm(child ~ parent, weights=frequency), col="blue", lwd=2) > lines(xv, predict(loess(child ~ parent, weights=frequency), > data.frame(parent=xv)), col="blue", lwd=2) > }) > > thanks, > -Michael > > > > -- > Michael Friendly Email: friendly AT yorku DOT ca > Professor, Psychology Dept. > York University Voice: 416 736-5115 x66249 Fax: 416 736-5814 > 4700 Keele Street Web: http://www.datavis.ca > Toronto, ONT M3J 1P3 CANADA > > ______________________________________________ > R-help@r-project.org mailing list > https://stat.ethz.ch/mailman/listinfo/r-help > PLEASE do read the posting guide http://www.R-project.org/posting-guide.html > and provide commented, minimal, self-contained, reproducible code. > ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.