I need to quote David Winsemius on this one again: "The advancement of science would be safer if you knew what you were doing."
Note that the whole model screams at you that it is wrongly modeled. You are running a fully interacted model with factor variables. Thus, you have 19 regressors plus the baseline for 150 observations. Note that all your coefficients are insignificant with a z-value of 0 and a p-value of 1. This indicates that something is severely wrong with your model. And it is not difficult to tell what. If you look at the residual deviance, it is effectively zero. This means that you are overfitting the model. Your model explains fully (with no error), whether the dependent variable is a zero or a one. This may be meaningful in a descriptive but not in an inferential sense. Also, there are no "Control" coefficients or interactions because modeling three factor levels only requires two dummy variables. The other one becomes the omitted baseline that is absorbed in the intercept. That is, the intercept and the "plain" interaction terms capture that group. Please pick up an introductory econometrics book before continue. Best, Daniel garciap wrote: > > Hi to all of you, > > I'm fitting an full factorial probit model from an experiment, and I've > the independent variables as factors. The model is as follows: > > > fit16<-glm(Sube ~ as.factor(CE)*as.factor(CEBO)*as.factor(Luz), > family=binomial(link="probit"), data=experimento) > > but, when I took a look to the results I've obtained the following: > > glm(formula = Sube ~ CE * CEBO * Luz, family = binomial(link = "probit"), > data = experimento) > > Deviance Residuals: > Min 1Q Median 3Q Max > -1.651e-06 -1.651e-06 1.651e-06 1.651e-06 1.651e-06 > > Coefficients: (3 not defined because of singularities) > Estimate Std. Error z value > Pr(>|z|) > (Intercept) 6.991e+00 3.699e+04 0 > 1 > CEexperimental 5.357e-09 4.775e+04 0 > 1 > CENO -1.398e+01 4.320e+04 0 > 1 > CEBOcombinado 4.948e-26 4.637e+04 0 > 1 > CEBOolor 1.183e-25 4.446e+04 0 > 1 > CEBOvisual 7.842e-26 5.650e+04 0 > 1 > Luzoscuridad 3.383e-26 4.637e+04 0 > 1 > CEexperimental:CEBOcombinado -6.227e-26 6.656e+04 0 > 1 > CENO:CEBOcombinado -3.758e-26 5.540e+04 0 > 1 > CEexperimental:CEBOolor -2.611e-25 6.865e+04 0 > 1 > CENO:CEBOolor -5.252e-26 5.620e+04 0 > 1 > CEexperimental:CEBOvisual -2.786e-09 7.700e+04 0 > 1 > CENO:CEBOvisual 8.169e-15 6.334e+04 0 > 1 > CEexperimental:Luzoscuridad -1.703e-25 6.304e+04 0 > 1 > CENO:Luzoscuridad -1.672e-28 6.117e+04 0 > 1 > CEBOcombinado:Luzoscuridad 1.028e-26 5.950e+04 0 > 1 > CEBOolor:Luzoscuridad 9.212e-27 6.207e+04 0 > 1 > CEBOvisual:Luzoscuridad NA NA NA > NA > CEexperimental:CEBOcombinado:Luzoscuridad 9.783e-26 8.744e+04 0 > 1 > CENO:CEBOcombinado:Luzoscuridad -2.948e-26 7.959e+04 0 > 1 > CEexperimental:CEBOolor:Luzoscuridad 1.573e-25 9.005e+04 0 > 1 > CENO:CEBOolor:Luzoscuridad -2.111e-26 8.208e+04 0 > 1 > CEexperimental:CEBOvisual:Luzoscuridad NA NA NA > NA > CENO:CEBOvisual:Luzoscuridad NA NA NA > NA > > (Dispersion parameter for binomial family taken to be 1) > > Null deviance: 2.0853e+02 on 150 degrees of freedom > Residual deviance: 4.1146e-10 on 130 degrees of freedom > AIC: 42 > > > Well, there are too many levels of the original factors lacking in this > table. As an example, the factor CE has three levels (Undefined, Control, > Experimental), but in the table there are only two of them (NO=undefined, > Experimental=Experimental). I need to check the complete result, how can I > obtain the effects for the remaining levels of the factors? > > Thanks, > > Pablo > Hi to all of you, I'm fitting an full factorial probit model from an experiment, and I've the independent variables as factors. The model is as follows: fit16<-glm(Sube ~ as.factor(CE)*as.factor(CEBO)*as.factor(Luz), family=binomial(link="probit"), data=experimento) but, when I took a look to the results I've obtained the following: glm(formula = Sube ~ CE * CEBO * Luz, family = binomial(link = "probit"), data = experimento) Deviance Residuals: Min 1Q Median 3Q Max -1.651e-06 -1.651e-06 1.651e-06 1.651e-06 1.651e-06 Coefficients: (3 not defined because of singularities) Estimate Std. Error z value Pr(>|z|) (Intercept) 6.991e+00 3.699e+04 0 1 CEexperimental 5.357e-09 4.775e+04 0 1 CENO -1.398e+01 4.320e+04 0 1 CEBOcombinado 4.948e-26 4.637e+04 0 1 CEBOolor 1.183e-25 4.446e+04 0 1 CEBOvisual 7.842e-26 5.650e+04 0 1 Luzoscuridad 3.383e-26 4.637e+04 0 1 CEexperimental:CEBOcombinado -6.227e-26 6.656e+04 0 1 CENO:CEBOcombinado -3.758e-26 5.540e+04 0 1 CEexperimental:CEBOolor -2.611e-25 6.865e+04 0 1 CENO:CEBOolor -5.252e-26 5.620e+04 0 1 CEexperimental:CEBOvisual -2.786e-09 7.700e+04 0 1 CENO:CEBOvisual 8.169e-15 6.334e+04 0 1 CEexperimental:Luzoscuridad -1.703e-25 6.304e+04 0 1 CENO:Luzoscuridad -1.672e-28 6.117e+04 0 1 CEBOcombinado:Luzoscuridad 1.028e-26 5.950e+04 0 1 CEBOolor:Luzoscuridad 9.212e-27 6.207e+04 0 1 CEBOvisual:Luzoscuridad NA NA NA NA CEexperimental:CEBOcombinado:Luzoscuridad 9.783e-26 8.744e+04 0 1 CENO:CEBOcombinado:Luzoscuridad -2.948e-26 7.959e+04 0 1 CEexperimental:CEBOolor:Luzoscuridad 1.573e-25 9.005e+04 0 1 CENO:CEBOolor:Luzoscuridad -2.111e-26 8.208e+04 0 1 CEexperimental:CEBOvisual:Luzoscuridad NA NA NA NA CENO:CEBOvisual:Luzoscuridad NA NA NA NA (Dispersion parameter for binomial family taken to be 1) Null deviance: 2.0853e+02 on 150 degrees of freedom Residual deviance: 4.1146e-10 on 130 degrees of freedom AIC: 42 Well, there are too many levels of the original factors lacking in this table. As an example, the factor CE has three levels (Undefined, Control, Experimental), but in the table there are only two of them (NO=undefined, Experimental=Experimental). I need to check the complete result, how can I obtain the effects for the remaining levels of the factors? Thanks, Pablo -- View this message in context: http://r.789695.n4.nabble.com/factors-in-probit-regression-tp3879176p3881041.html Sent from the R help mailing list archive at Nabble.com. ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.