Thank you very much for the answer. If I take Poisson model and follow
"Generalized M-fluctuation tests for parameter instability", A. Zeileis and
K. Hornik, Statistica Neerlandica (2007) Vol. 61, N. 4, p. 500-501 (section
4.3):

data("Boston")
n <- 506;
my.X <- as.matrix(cbind(1, Boston["crim"], Boston["age"])); 
my.model <- glm(tax ~ crim + age, family = poisson, data = Boston);
my.psi <- estfun(my.model);
my.mu <- fitted(my.model);
J <- sum(my.mu*my.X%*%t(my.X))/n;
my.process <- apply(as.matrix(my.psi), 2, cumsum)/sqrt(J*n);

gprocess <- gefp(tax ~ crim + age, family = poisson, data=Boston);

then my.process and gprocess$process have to be the same? 

Best regards,
Julia

--
View this message in context: 
http://r.789695.n4.nabble.com/gefp-boundaries-tp3872529p3878886.html
Sent from the R help mailing list archive at Nabble.com.

______________________________________________
R-help@r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.

Reply via email to